Теорема Райса-Шапиро — различия между версиями
Vincent (обсуждение | вклад) (→Теорема Райса-Шапиро) |
Tsar (обсуждение | вклад) (Список источников) |
||
| Строка 136: | Строка 136: | ||
Значит, <tex>A = A_{\Gamma}</tex>. | Значит, <tex>A = A_{\Gamma}</tex>. | ||
}} | }} | ||
| + | |||
| + | |||
| + | == Литература == | ||
| + | * ''Верещагин Н. К., Шень A.'' Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции. {{---}} М.: МЦНМО, 1999. С. 134. ISBN 5-900916-36-7 | ||
| + | * ''Хопкрофт Д., Мотвани Р., Ульман Д.'' Введение в теорию автоматов, языков и вычислений, 2-е изд. : Пер. с англ. {{---}} М.: Издательский дом «Вильямс», 2008. {{---}} С. 528 {{---}} ISBN 978-5-8459-1347-0 (рус.) | ||
Версия 06:55, 24 января 2012
Содержание
Определение образца
| Определение: |
| Пусть . Тогда называется образцом. |
Свойство образца
| Определение: |
| Пусть , где . Тогда называется свойством образца . |
Лемма о перечислимости свойства образца
| Лемма: |
Свойство перечислимо для любого образца . |
| Доказательство: |
|
Построим полуразрешитель : for if while True return 1Полуразрешителя достаточно для доказательства перечислимости. |
Лемма о перечислимости свойства перечислимого множества образцов
| Лемма: |
Пусть — перечислимое множество образцов, .
Тогда является перечислимым. |
| Доказательство: |
|
Построим полуразрешитель : for for if return 1Полуразрешителя достаточно для доказательства перечислимости. |
Теорема Райса-Шапиро
| Теорема: | ||||||||||||
Свойство функций перечислимо тогда и только тогда, когда , где — перечислимое множество образцов. | ||||||||||||
| Доказательство: | ||||||||||||
|
Очевидно (перебор по TL).
Здесь нам потребуются две вспомогательные леммы.
Функции с конечной областью определения записываются так: if return if return Такие функции перечислимы. Значит, такие функции, удоволетворяющие , тоже перечислимы. по первой вспомогательной лемме. по второй вспомогательной лемме. Значит, . | ||||||||||||
Литература
- Верещагин Н. К., Шень A. Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции. — М.: МЦНМО, 1999. С. 134. ISBN 5-900916-36-7
- Хопкрофт Д., Мотвани Р., Ульман Д. Введение в теорию автоматов, языков и вычислений, 2-е изд. : Пер. с англ. — М.: Издательский дом «Вильямс», 2008. — С. 528 — ISBN 978-5-8459-1347-0 (рус.)