Изменения

Перейти к: навигация, поиск

Пересечение окружностей

268 байт добавлено, 04:04, 3 февраля 2012
Нет описания правки
[[Файл:circles.png‎|450px|thumb|Пересечение окружностей]]Заданы две окружности разного радиуса точками центров <tex>(x_0;y_0)</tex>, <tex>(x_1;y_1)</tex> и радиусами <tex>r_0</tex> и <tex>r_1</tex> соответственно.
Будем вычислять координаты искомых точек пересечения окружностей в новой системе координат, связанной с векторами <tex>\bar{a}</tex> и <tex>\bar{b}</tex>, которые изображены на рисунке. Искать соответственно будем в виду <tex>\alpha\bar{a}+\beta\bar{b}</tex>.
Для начала напишем, чему равен вектор <tex>\bar{a}=\begin{pmatrix}
x_1-x_0\\
\end{pmatrix}</tex>.
[[Файл:circlesКоэффициенты <tex>\alpha</tex> и <tex>\beta</tex> будем искать из системы уравнений <tex>\left\{\begin{array}{lrl}(\alpha\bar{a}+\beta\bar{b})^2=r_0^2\\(\alpha\bar{a}+\beta\bar{b}-\bar{a})^2=r_1^2\\\end{array}\right.png‎|450px|thumb|Пересечение окружностей]]</tex>
42
правки

Навигация