Эргодическая марковская цепь — различия между версиями
(→Эргодическая теорема: опять для всех натуральных) |
Whiplash (обсуждение | вклад) м (→Для циклических цепей) |
||
Строка 39: | Строка 39: | ||
В случае циклической цепи переходы из одного циклического класса в другой возможны только при определенных значениях <tex> n </tex>, которые периодически повторяются. Таким образом, никакая степень матрицы переходов <tex>P</tex> не является положительной матрицей, и различные степени содержат нули на различных местах. С увеличением степени расположение этих нулей периодически повторяется. Следовательно, последовательность <tex>P^{n}</tex> не может сходиться в обычном смысле, для нее требуется так называемая суммируемость по Эйлеру. | В случае циклической цепи переходы из одного циклического класса в другой возможны только при определенных значениях <tex> n </tex>, которые периодически повторяются. Таким образом, никакая степень матрицы переходов <tex>P</tex> не является положительной матрицей, и различные степени содержат нули на различных местах. С увеличением степени расположение этих нулей периодически повторяется. Следовательно, последовательность <tex>P^{n}</tex> не может сходиться в обычном смысле, для нее требуется так называемая суммируемость по Эйлеру. | ||
− | Рассмотрим матрицу <tex>( | + | Рассмотрим матрицу <tex>(kI + (1 - k)P)</tex> при некотором <tex>k, ~ 0 < k < 1</tex>. Эта матрица является ''переходной матрицей''. Она имеет положительные элементы на всех тех же местах, что и <tex>P</tex>, следовательно, она также ''задает эргодическую цепь''. Также диагональные элементы этой матрицы положительны. Значит, в каждое состояние можно возвратиться за один шаг, а это значит, что <tex>d = 1</tex>. Таким образом, новая цепь является регулярной. |
− | Из [[Регулярная марковская цепь#Эргодическая теорема для регулярных цепей | эргодической теоремы для регулярных цепей]] следует, что <tex>( | + | Из [[Регулярная марковская цепь#Эргодическая теорема для регулярных цепей | эргодической теоремы для регулярных цепей]] следует, что <tex>(kI + (1 - k)P)^{n}</tex> стремится к матрице <tex>A = \xi\alpha</tex>, где <tex>\alpha</tex> - положительный вероятностный вектор. Таким образом: |
− | : <tex> A = \lim\limits_{x\to \infty} ( | + | : <tex> A = \lim\limits_{x\to \infty} (kI + (1 - k)P)^{n}</tex> |
: <tex> A = \lim\limits_{x\to \infty} \sum\limits_{i = 0}^{n} {n\choose i} k^{n - i} (1 - k)^{i} P^{i} ~~~~~ (1)</tex> | : <tex> A = \lim\limits_{x\to \infty} \sum\limits_{i = 0}^{n} {n\choose i} k^{n - i} (1 - k)^{i} P^{i} ~~~~~ (1)</tex> | ||
Но последнее равенство в точности означает, что последовательность <tex>P^{n}</tex> суммируема по Эйлеру к <tex>A</tex>, причем суммируема при каждом значении <tex>k</tex>. | Но последнее равенство в точности означает, что последовательность <tex>P^{n}</tex> суммируема по Эйлеру к <tex>A</tex>, причем суммируема при каждом значении <tex>k</tex>. | ||
Строка 59: | Строка 59: | ||
− | Так как вектор <tex>\alpha</tex> был получен из предельной матрицы для <tex>( | + | Так как вектор <tex>\alpha</tex> был получен из предельной матрицы для <tex>(kI + (1 - k)P)</tex>, являющейся регулярной переходной матрицей, то он будет её единственным неподвижным вероятностным вектором. Но матрица <tex>(kI + (1 - k)P)</tex> должна иметь те же неподвижные векторы, что и <tex>P</tex>, так как из соотношения |
− | :<tex>\pi ( | + | :<tex>\pi (kI + (1 - k)P) = \pi</tex>, |
следует, что | следует, что | ||
:<tex>\pi (1 - k) P = \pi (1 - k)</tex> | :<tex>\pi (1 - k) P = \pi (1 - k)</tex> |
Версия 01:19, 8 февраля 2012
Определение: |
Эргодическая марковская цепь — марковская цепь, целиком состоящая из одного эргодического класса. |
Содержание
Стационарный режим
Эргодические марковские цепи описываются сильно связным графом. Это означает, что в такой системе возможен переход из любого состояния в любое состояние за конечное число шагов.
Для эргодических цепей при достаточно большом времени функционирования (
) наступает стационарный режим, при котором вероятности состояний системы не зависят от времени и не зависят от распределения вероятностей в начальный момент времени, т.е. .Классификация эргодических цепей
Определение: |
В эргодической цепи можно выделить циклические классы. Количество циклических классов регулярной. С течением времени текущее состояние движется по циклическим классам в определенном порядке, причем каждые d шагов она оказывается в одном и том же циклическом классе. | называют периодом цепи, если цепь состоит целиком из одного циклического класса, её называют
Таким образом, эргодические цепи делятся на регулярные и циклические.
Эргодическая теорема
Определение: |
Эргодическое (стационарное) распределение - распределение | , такое что и (где - вероятность оказаться в -ом состоянии, выйдя из -ого, через переходов).
Для регулярных цепей
Доказательство теоремы для случая регулярных цепей приведено в конспекте про регулярные цепи.
Для циклических цепей
Теорема (Эргодическая теорема): |
Для любой эргодической цепи последовательность степеней суммируется по Эйлеру к предельной матрице , и эта предельная матрица имеет вид , где - положительный вероятностный вектор. |
Доказательство: |
В случае циклической цепи переходы из одного циклического класса в другой возможны только при определенных значениях , которые периодически повторяются. Таким образом, никакая степень матрицы переходов не является положительной матрицей, и различные степени содержат нули на различных местах. С увеличением степени расположение этих нулей периодически повторяется. Следовательно, последовательность не может сходиться в обычном смысле, для нее требуется так называемая суммируемость по Эйлеру.Рассмотрим матрицу при некотором . Эта матрица является переходной матрицей. Она имеет положительные элементы на всех тех же местах, что и , следовательно, она также задает эргодическую цепь. Также диагональные элементы этой матрицы положительны. Значит, в каждое состояние можно возвратиться за один шаг, а это значит, что . Таким образом, новая цепь является регулярной.Из эргодической теоремы для регулярных цепей следует, что стремится к матрице , где - положительный вероятностный вектор. Таким образом: |
Следствия
Теорема: |
Если - объекты из предыдущей теоремы. Тогда справедливы факты:
|
Доказательство: |
Домножим на . Таким образом, мы получим, что предел последовательности в смысле Эйлера равен . Значит, первый факт доказан.
следует, что и поскольку , то . Получается, что второй факт доказан.
|
Пример
Рассмотрим марковскую цепь из двух состояний. Будем бросать честную монету и с вероятностью 0.5 менять состояние на противороложное. Такую цепь определяет стохастическая матрица вида
. Предельным распределением для этой цепи будет , где .Ссылки
Литература
Дж. Кемени, Дж. Снелл "Конечные цепи Маркова" - Издательство "Наука", 1970 г - 129 c.