Связь максимального паросочетания и минимального вершинного покрытия в двудольных графах — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 1: Строка 1:
 
==Определения==
 
==Определения==
===Максимальное паросочетание===
 
{{Определение|definition=
 
'''Максимальным''' [[Теорема_о_максимальном_паросочетании_и_дополняющих_цепях|'''паросочетанием''']] (англ. '''Maximum matching''', '''MM''') в [[Двудольные графы и раскраска в 2 цвета|двудольном графе]] <tex>G</tex> называется паросочетание максимальной мощности.
 
}}
 
 
 
===Минимальное вершинное покрытие===
 
===Минимальное вершинное покрытие===
 
{{Определение|neat=neat|definition=
 
{{Определение|neat=neat|definition=
Строка 12: Строка 7:
 
'''Минимальным вершинным покрытием''' (англ. '''Minimum vertex covering''', '''MVC''') графа <tex>G=(V,E)</tex> называется вершинное покрытие, состоящее из наименьшего числа вершин.  
 
'''Минимальным вершинным покрытием''' (англ. '''Minimum vertex covering''', '''MVC''') графа <tex>G=(V,E)</tex> называется вершинное покрытие, состоящее из наименьшего числа вершин.  
 
}}
 
}}
 +
<br/>
 
<br/>
 
<br/>
 
<br/>
 
<br/>
Строка 17: Строка 13:
 
<br/>
 
<br/>
 
<br/>
 
<br/>
 +
  
 
==Пример==
 
==Пример==
 
[[Файл:Cover.jpg|300px]]
 
[[Файл:Cover.jpg|300px]]
 
<br/>
 
<br/>
Множество вершин красного цвета - минимальное вершинное покрытие.
+
Множество вершин красного цвета минимальное вершинное покрытие.
 
<br/>
 
<br/>
  
<br/>
 
 
<br/>
 
<br/>
  
Строка 32: Строка 28:
 
В произвольном двудольном графе мощность максимального паросочетания равна мощности минимального вершинного покрытия.
 
В произвольном двудольном графе мощность максимального паросочетания равна мощности минимального вершинного покрытия.
 
|proof=
 
|proof=
Пусть в <tex>G</tex> построено максимальное паросочетание. Ориентируем ребра паросочетания, чтобы они шли из правой доли в левую, ребра не из паросочетания &ndash; так, чтобы они шли из левой доли в правую. Запустим [[Обход_в_глубину,_цвета_вершин|обход в глубину]] из всех не насыщенных паросочетанием вершин левой доли. Разобьем вершины каждой доли графа на два множества: те, которые были посещены в процессе обхода, и те, которые не были посещены в процессе обхода.
+
Пусть в <tex>G</tex> построено максимальное паросочетание. Ориентируем ребра паросочетания, чтобы они шли из правой доли в левую, ребра не из паросочетания так, чтобы они шли из левой доли в правую. Запустим [[Обход_в_глубину,_цвета_вершин|обход в глубину]] из всех не насыщенных паросочетанием вершин левой доли. Разобьем вершины каждой доли графа на два множества: те, которые были посещены в процессе обхода, и те, которые не были посещены в процессе обхода.
Тогда <tex>L = L^+ \cup L^-</tex>, <tex>R = R^+ \cup R^-</tex>, где <tex>L, R</tex> &ndash; правая и левая доли соответственно, <tex>L^+, R^+</tex> &ndash; вершины правой и левой доли, посещенные обходом, <tex>L^-, R^-</tex> &ndash; не посещенные обходом вершины.
+
Тогда <tex>L = L^+ \cup L^-</tex>, <tex>R = R^+ \cup R^-</tex>, где <tex>L, R</tex> правая и левая доли соответственно, <tex>L^+, R^+</tex> вершины правой и левой доли, посещенные обходом, <tex>L^-, R^-</tex> не посещенные обходом вершины.
 
Тогда в <tex>G</tex> могут быть следующие ребра:
 
Тогда в <tex>G</tex> могут быть следующие ребра:
 
[[Файл:bipartdfs_right.jpg|thumb|center|300px|Доли <tex>L^+, L^-, R^+, R^-</tex> и ребра между ними.]]
 
[[Файл:bipartdfs_right.jpg|thumb|center|300px|Доли <tex>L^+, L^-, R^+, R^-</tex> и ребра между ними.]]
Строка 41: Строка 37:
  
 
Очевидно, что ребер из <tex>L^+</tex> в <tex>R^-</tex> и из из <tex>R^+</tex> в <tex>L^-</tex> быть не может.
 
Очевидно, что ребер из <tex>L^+</tex> в <tex>R^-</tex> и из из <tex>R^+</tex> в <tex>L^-</tex> быть не может.
Ребер из из <tex>R^-</tex> в <tex>L^+</tex> быть не может, т.к. если такое ребро <tex>uv</tex> существует, то оно &ndash; ребро паросочетания. Тогда вершина <tex>v</tex> насыщена паросочетанием. Но т.к. <tex>v \in L^+</tex>, то в нее можно дойти из какой-то ненасыщенной вершины левой доли. Значит, существует ребро <tex>wv, w \in R^+</tex>. Но тогда <tex>v</tex> инцидентны два ребра из паросочетания. Противоречие.  
+
Ребер из из <tex>R^-</tex> в <tex>L^+</tex> быть не может, т.к. если такое ребро <tex>uv</tex> существует, то оно ребро паросочетания. Тогда вершина <tex>v</tex> насыщена паросочетанием. Но т.к. <tex>v \in L^+</tex>, то в нее можно дойти из какой-то ненасыщенной вершины левой доли. Значит, существует ребро <tex>wv, w \in R^+</tex>. Но тогда <tex>v</tex> инцидентны два ребра из паросочетания. Противоречие.  
  
 
Заметим, что минимальным вершинным покрытием <tex>G</tex> является либо <tex>L</tex>, либо <tex>R</tex>, либо <tex>L^- \cup R^+</tex>.
 
Заметим, что минимальным вершинным покрытием <tex>G</tex> является либо <tex>L</tex>, либо <tex>R</tex>, либо <tex>L^- \cup R^+</tex>.
 
В <tex>R^+</tex> не насыщенных паросочетанием вершин быть не может, т.к. иначе в <tex>G</tex> существует дополняющая цепь, что противоречит максимальности построенного паросочетания.
 
В <tex>R^+</tex> не насыщенных паросочетанием вершин быть не может, т.к. иначе в <tex>G</tex> существует дополняющая цепь, что противоречит максимальности построенного паросочетания.
 
В <tex>L^-</tex> свободных вершин быть не может, т.к. все они должны находиться в <tex>L^+</tex>. Тогда т.к. ребер из паросочетания между <tex>R^+</tex>
 
В <tex>L^-</tex> свободных вершин быть не может, т.к. все они должны находиться в <tex>L^+</tex>. Тогда т.к. ребер из паросочетания между <tex>R^+</tex>
и <tex>L^-</tex> нет, то каждому ребру <tex>MM</tex> инцидентна ровно одна вершина из <tex>L^- \cup R^+</tex>.
+
и <tex>L^-</tex> нет, то каждому ребру максимальным паросочетания инцидентна ровно одна вершина из <tex>L^- \cup R^+</tex>.  
 
+
Тогда <tex>|L^- \cup R^+| = |MM|</tex>. Множество вершин <tex>L^- \cup R^+</tex> является минимальным вершинным покрытием. Значит максимальное паросочетание равно минимальному вершинному покрытию.
Тогда <tex>|L^- \cup R^+| = |MM| \le \min(|L|, |R|)</tex>. Значит, минимальным вершинным покрытием является <tex>L^- \cup R^+</tex> и <tex>|MVC| = |MM|</tex>.
 
 
}}
 
}}
  
===Алгоритм построения MVC===
+
===Алгоритм построения минимального вершинного покрытия===
 
Из доказательства предыдущей теоремы следует алгоритм поиска минимального вершинного покрытия графа:
 
Из доказательства предыдущей теоремы следует алгоритм поиска минимального вершинного покрытия графа:
 
*Построить максимальное паросочетание.
 
*Построить максимальное паросочетание.
 
*Ориентировать ребра:
 
*Ориентировать ребра:
**Из паросочетания &ndash; из правой доли в левую.
+
**Из паросочетания из правой доли в левую.
**Не из паросочетания &ndash; из левой доли в правую.
+
**Не из паросочетания из левой доли в правую.
 
*Запустить обход в глубину из всех свободных вершин левой доли, построить множества <tex>L^+,L^-,R^+,R^-,</tex>.
 
*Запустить обход в глубину из всех свободных вершин левой доли, построить множества <tex>L^+,L^-,R^+,R^-,</tex>.
 
*В качестве результата взять <tex>L^- \cup R^+</tex>.
 
*В качестве результата взять <tex>L^- \cup R^+</tex>.
 +
 +
==См. также ==
 +
[[Связь_вершинного_покрытия_и_независимого_множества|Связь вершинного покрытия и независимого множества]].
  
 
== Источники ==
 
== Источники ==

Версия 20:01, 23 февраля 2012

Определения

Минимальное вершинное покрытие

Определение:
Вершинным покрытием (англ. Vertex covering, VC) графа [math]G=(V,E)[/math] называется такое подмножество [math]S[/math] множества вершин графа [math]V[/math], что любое ребро этого графа инцидентно хотя бы одной вершине из множества [math]S[/math].


Определение:
Минимальным вершинным покрытием (англ. Minimum vertex covering, MVC) графа [math]G=(V,E)[/math] называется вершинное покрытие, состоящее из наименьшего числа вершин.








Пример

Cover.jpg
Множество вершин красного цвета — минимальное вершинное покрытие.


Связь MM и MVC в двудольном графе

Теорема о мощности MVC и MM

Теорема:
В произвольном двудольном графе мощность максимального паросочетания равна мощности минимального вершинного покрытия.
Доказательство:
[math]\triangleright[/math]

Пусть в [math]G[/math] построено максимальное паросочетание. Ориентируем ребра паросочетания, чтобы они шли из правой доли в левую, ребра не из паросочетания — так, чтобы они шли из левой доли в правую. Запустим обход в глубину из всех не насыщенных паросочетанием вершин левой доли. Разобьем вершины каждой доли графа на два множества: те, которые были посещены в процессе обхода, и те, которые не были посещены в процессе обхода. Тогда [math]L = L^+ \cup L^-[/math], [math]R = R^+ \cup R^-[/math], где [math]L, R[/math] — правая и левая доли соответственно, [math]L^+, R^+[/math] — вершины правой и левой доли, посещенные обходом, [math]L^-, R^-[/math] — не посещенные обходом вершины. Тогда в [math]G[/math] могут быть следующие ребра:

Доли [math]L^+, L^-, R^+, R^-[/math] и ребра между ними.
  • Из вершин [math]L^+[/math] в вершины [math]R^+[/math] и из вершин [math]R^+[/math] в вершины [math]L^+[/math].
  • Из вершин [math]L^-[/math] в вершины [math]R^-[/math] и из вершин [math]R^-[/math] в вершины [math]L^-[/math].
  • Из вершин [math]L^-[/math] в вершины [math]R^+[/math].

Очевидно, что ребер из [math]L^+[/math] в [math]R^-[/math] и из из [math]R^+[/math] в [math]L^-[/math] быть не может. Ребер из из [math]R^-[/math] в [math]L^+[/math] быть не может, т.к. если такое ребро [math]uv[/math] существует, то оно — ребро паросочетания. Тогда вершина [math]v[/math] насыщена паросочетанием. Но т.к. [math]v \in L^+[/math], то в нее можно дойти из какой-то ненасыщенной вершины левой доли. Значит, существует ребро [math]wv, w \in R^+[/math]. Но тогда [math]v[/math] инцидентны два ребра из паросочетания. Противоречие.

Заметим, что минимальным вершинным покрытием [math]G[/math] является либо [math]L[/math], либо [math]R[/math], либо [math]L^- \cup R^+[/math]. В [math]R^+[/math] не насыщенных паросочетанием вершин быть не может, т.к. иначе в [math]G[/math] существует дополняющая цепь, что противоречит максимальности построенного паросочетания. В [math]L^-[/math] свободных вершин быть не может, т.к. все они должны находиться в [math]L^+[/math]. Тогда т.к. ребер из паросочетания между [math]R^+[/math] и [math]L^-[/math] нет, то каждому ребру максимальным паросочетания инцидентна ровно одна вершина из [math]L^- \cup R^+[/math].

Тогда [math]|L^- \cup R^+| = |MM|[/math]. Множество вершин [math]L^- \cup R^+[/math] является минимальным вершинным покрытием. Значит максимальное паросочетание равно минимальному вершинному покрытию.
[math]\triangleleft[/math]

Алгоритм построения минимального вершинного покрытия

Из доказательства предыдущей теоремы следует алгоритм поиска минимального вершинного покрытия графа:

  • Построить максимальное паросочетание.
  • Ориентировать ребра:
    • Из паросочетания — из правой доли в левую.
    • Не из паросочетания — из левой доли в правую.
  • Запустить обход в глубину из всех свободных вершин левой доли, построить множества [math]L^+,L^-,R^+,R^-,[/math].
  • В качестве результата взять [math]L^- \cup R^+[/math].

См. также

Связь вершинного покрытия и независимого множества.

Источники

1. Теорема Кёнига.