Теорема о существовании простого цикла в случае существования цикла — различия между версиями
Строка 1: | Строка 1: | ||
{{В разработке}} | {{В разработке}} | ||
+ | |||
+ | {{Лемма | ||
+ | |statement=Наличие двух различных рёберно-простых путей между какими-либо двумя вершинами графа <tex>G</tex> равносильно наличию цикла в этом графе. | ||
+ | |proof= | ||
+ | "<tex>\Rightarrow</tex>" | ||
+ | |||
+ | Предположим, что в графе <tex>G</tex> существует два различных реберно-простых пути между вершинами <tex>u</tex> и <tex>v</tex>. Пусть это будут пути <tex>p = u e_1 v_1\ldots v_{n-1} e_n v</tex> и <tex>p' = u e'_1 v'_1\ldots v'_{n-1} e'_n v</tex>. Пусть их наибольший общий префикс заканчивается в вершине <tex>w = v_k = v'_l</tex>. Заметим, что <tex>w \neq v</tex>, т. к. пути различны. Рассмотрим суффиксы путей <tex>p</tex> и <tex>p'</tex>: <tex>s = w e_{k+1} \ldots v</tex> и <tex>s' = w e'_{l+1} \ldots v</tex> соответственно. Найдем первую совпадающую вершину <tex>w'</tex> в <tex>s</tex> и <tex>s'</tex>, не равную <tex>w</tex>. Осталось заметить, что замкнутый путь <tex>c</tex>, полученный объединением <tex>w \rightarrow w'</tex> части пути <tex>s</tex> вместе с <tex>w' \rightarrow w</tex> частью цепи <tex>s'</tex> является циклическим путем. Действительно, т. r. в путях <tex>s</tex> и <tex>s'</tex> двух ребер подряд не бывает, т.к. это реберно простые пути, а ребра, смежные с <tex>w</tex> и <tex>w'</tex> не совпадают по построению. Циклический путь <tex>c</tex> является представителем некоторого цикла в графе <tex>G</tex>. | ||
+ | |||
+ | "<tex>\Leftarrow</tex>" | ||
+ | |||
+ | Предположим, что в графе <tex>G</tex> существует цикл и пусть циклический путь <tex>c = v_0 e_1 v_1 \ldots e_n v_0</tex> {{---}} его представитель. Найдем первую точку <tex>w = v_k = v_l (l > k)</tex> пересечения <tex>c</tex> с самим собой. Необходимо такая точка существует, т.к. путь замкнутый. Рассмотрим циклический путь <tex>v_k e_{k+1} \ldots e_l v_l</tex>: он простой, т. к. если это неверно и существует вершина <tex>v_j = v_j' (k < j < j' < l)</tex>, то в <tex>c</tex> вершина <tex>v_j'</tex> повторяется раньше, чем <tex>v_l</tex>. Теперь элементарно взяв две вершины <tex>v_k</tex> и <tex>v_{k+1}</tex> легко заметить, что существует два различных реберно-неперсекающихся пути между ними: <tex>v_k e_{k+1} v_{k+1}</tex> и <tex>v_k e_l v_{l - 1} \ldots v_k</tex>. | ||
+ | }} | ||
+ | |||
{{Теорема | {{Теорема | ||
Строка 5: | Строка 18: | ||
Если в неориентированном графе существует цикл, то в этом графе существует простой цикл. | Если в неориентированном графе существует цикл, то в этом графе существует простой цикл. | ||
|proof= | |proof= | ||
− | + | Воспользуемся доказанной выше леммой. Так как в нашем графе существует цикл, то существуют два реберно-простых пути между некоторыми вершинами: <tex>v_0e_1v_1e_2v_2 ... e_nv_n</tex>, <tex>v'_0e'_1v'_1e'_2v'_2 ... e'_mv'_m</tex>, <tex>v_0 = v'_0</tex>, <tex>v_n = v'_m</tex>. Удалим из путей одинаковые префиксы и суффиксы, оставив из тех только последние и первые вершины, соответственно. Оставшиеся пути: <tex>v_ae_{a+1} ... e_bv_b</tex>, <tex>v'_ae'_{a+1} ... e'_cv'_c</tex>, <tex>v_a = v'_a</tex>, <tex>v_b = v'_c</tex>, <tex>e_{a+1} \neq e'_{a+1}</tex>, <tex>e_b \neq e'_c</tex>. | |
− | + | Рассмотрим конкатенацию первого нового пути и развёрнутого второго нового пути. Она будет циклом, так как начальная и конечная вершины совпадают, изначально пути были рёберно-простыми, а в точке соединения, равно как и в точке замыкания цикла, условие различности двух идущих подряд рёбер выполняется. Мы получили цикл, определим его: <tex>v_0e_1v_1 ... e_kv_k</tex>, <tex>v_0 = v_k</tex>. | |
− | |||
− | Рассмотрим конкатенацию первого нового пути и развёрнутого второго нового пути. Она будет циклом, так как начальная и конечная вершины совпадают, изначально пути были рёберно-простыми, а в точке соединения, равно как и в точке замыкания цикла, условие различности двух идущих подряд рёбер выполняется. Мы получили цикл, определим его: <tex> | ||
* Алгоритм: | * Алгоритм: | ||
− | 1. Для вершины <tex> | + | 1. Для вершины <tex>v_i</tex> найдём момент её последнего вхождения в цикл - <tex>v_j</tex>. |
− | 2. Удалим отрезок цикла от <tex> | + | 2. Удалим отрезок цикла от <tex>e_{i+1}</tex> до <tex>v_j</tex>, включительно. |
− | Получившаяся последовательность вершин и рёбер графа останется циклом, и в нём вершина <tex> | + | Получившаяся последовательность вершин и рёбер графа останется циклом, и в нём вершина <tex>v_i</tex> будет содержаться ровно один раз. |
− | Начнём процесс с вершины <tex> | + | Начнём процесс с вершины <tex>v_1</tex> и будем повторять его каждый раз для следующей вершины нового цикла, пока не дойдём до последней. По построению, получившийся цикл будет содержать каждую из вершин графа не более одного раза, а значит, будет простым. |
}} | }} | ||
[[Файл: prime_c.png|thumb|600px|center|Для вершины 2 находим последнее ее вхождение в цикл и удаляем отрезок цикла, выделенный <font color=#22B14C>зеленым.</font><br>[(2, 5) - 5 - (5, 6) - 6 - (6, 4) - 4 - (4, 2) - 2]]] | [[Файл: prime_c.png|thumb|600px|center|Для вершины 2 находим последнее ее вхождение в цикл и удаляем отрезок цикла, выделенный <font color=#22B14C>зеленым.</font><br>[(2, 5) - 5 - (5, 6) - 6 - (6, 4) - 4 - (4, 2) - 2]]] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
== Замечания == | == Замечания == | ||
* Так как вершинно-простой путь всегда является рёберно-простым, первая теорема справедлива и для вершинно-простых путей (усиление условия). | * Так как вершинно-простой путь всегда является рёберно-простым, первая теорема справедлива и для вершинно-простых путей (усиление условия). |
Версия 01:46, 25 февраля 2012
Лемма: |
Наличие двух различных рёберно-простых путей между какими-либо двумя вершинами графа равносильно наличию цикла в этом графе. |
Доказательство: |
" "Предположим, что в графе существует два различных реберно-простых пути между вершинами и . Пусть это будут пути и . Пусть их наибольший общий префикс заканчивается в вершине . Заметим, что , т. к. пути различны. Рассмотрим суффиксы путей и : и соответственно. Найдем первую совпадающую вершину в и , не равную . Осталось заметить, что замкнутый путь , полученный объединением части пути вместе с частью цепи является циклическим путем. Действительно, т. r. в путях и двух ребер подряд не бывает, т.к. это реберно простые пути, а ребра, смежные с и не совпадают по построению. Циклический путь является представителем некоторого цикла в графе ." Предположим, что в графе " существует цикл и пусть циклический путь — его представитель. Найдем первую точку пересечения с самим собой. Необходимо такая точка существует, т.к. путь замкнутый. Рассмотрим циклический путь : он простой, т. к. если это неверно и существует вершина , то в вершина повторяется раньше, чем . Теперь элементарно взяв две вершины и легко заметить, что существует два различных реберно-неперсекающихся пути между ними: и . |
Теорема: |
Если в неориентированном графе существует цикл, то в этом графе существует простой цикл. |
Доказательство: |
Воспользуемся доказанной выше леммой. Так как в нашем графе существует цикл, то существуют два реберно-простых пути между некоторыми вершинами: , , , . Удалим из путей одинаковые префиксы и суффиксы, оставив из тех только последние и первые вершины, соответственно. Оставшиеся пути: , , , , , .Рассмотрим конкатенацию первого нового пути и развёрнутого второго нового пути. Она будет циклом, так как начальная и конечная вершины совпадают, изначально пути были рёберно-простыми, а в точке соединения, равно как и в точке замыкания цикла, условие различности двух идущих подряд рёбер выполняется. Мы получили цикл, определим его: , .
1. Для вершиныНачнём процесс с вершины найдём момент её последнего вхождения в цикл - . 2. Удалим отрезок цикла от до , включительно. Получившаяся последовательность вершин и рёбер графа останется циклом, и в нём вершина будет содержаться ровно один раз. и будем повторять его каждый раз для следующей вершины нового цикла, пока не дойдём до последней. По построению, получившийся цикл будет содержать каждую из вершин графа не более одного раза, а значит, будет простым. |
Замечания
- Так как вершинно-простой путь всегда является рёберно-простым, первая теорема справедлива и для вершинно-простых путей (усиление условия).
- Так как вершинно-простой цикл всегда является рёберно-простым, первая теорема справедлива и для рёберно-простого цикла (ослабление результата).
- Утверждение
Если две вершины графа лежат на цикле, то они лежат на простом цикле.
в общем случае неверно, так как эти вершины могут лежать в разных компонентах вершинной или рёберной двусвязности: все пути из одной вершины в другую будут содержать одну и ту же точку сочленения или один и тот же мост.