Теорема Редеи-Камиона — различия между версиями
Строка 38: | Строка 38: | ||
Cильно связанный турнир <tex> T </tex> из <tex> n \geq 3 </tex> вершин содержит [[Основные_определения_теории_графов#.D0.9E.D1.80.D0.B8.D0.B5.D0.BD.D1.82.D0.B8.D1.80.D0.BE.D0.B2.D0.B0.D0.BD.D0.BD.D1.8B.D0.B5_.D0.B3.D1.80.D0.B0.D1.84.D1.8B|цикл]] длины <tex> 3 </tex>. | Cильно связанный турнир <tex> T </tex> из <tex> n \geq 3 </tex> вершин содержит [[Основные_определения_теории_графов#.D0.9E.D1.80.D0.B8.D0.B5.D0.BD.D1.82.D0.B8.D1.80.D0.BE.D0.B2.D0.B0.D0.BD.D0.BD.D1.8B.D0.B5_.D0.B3.D1.80.D0.B0.D1.84.D1.8B|цикл]] длины <tex> 3 </tex>. | ||
|proof= | |proof= | ||
− | |||
Пусть <tex> u </tex> - произвольная вершина турнира <tex> T </tex>. Множество вершин <tex> VT - u </tex> распадается на <tex> 2 </tex> непересекающихся множества: | Пусть <tex> u </tex> - произвольная вершина турнира <tex> T </tex>. Множество вершин <tex> VT - u </tex> распадается на <tex> 2 </tex> непересекающихся множества: | ||
* <tex> V_1 = \{ v_1 \in VT | (v_1, u) \in ET \} </tex>, | * <tex> V_1 = \{ v_1 \in VT | (v_1, u) \in ET \} </tex>, | ||
* <tex> V_2 = \{ v_2 \in VT | (u, v_2) \in ET \} </tex>. | * <tex> V_2 = \{ v_2 \in VT | (u, v_2) \in ET \} </tex>. | ||
+ | [[Файл: Redei_kamion_1.png|250px|thumb|center]] | ||
<tex> T </tex> сильно связен, следовательно: | <tex> T </tex> сильно связен, следовательно: | ||
Строка 49: | Строка 49: | ||
#* <tex> w_1 \in V_1 </tex>, | #* <tex> w_1 \in V_1 </tex>, | ||
#* <tex> w_2 \in V_2 </tex>. | #* <tex> w_2 \in V_2 </tex>. | ||
+ | [[Файл: Redei_kamion_2.png|250px|thumb|center|<font color=#ED1C24>Красным</font> цветом выделен цикл длины 3]] | ||
+ | |||
Цикл <tex> S_3: (u \rightarrow w_2 \rightarrow w_1 \rightarrow u) </tex> - искомый цикл длины <tex> 3 </tex>, q.e.d. | Цикл <tex> S_3: (u \rightarrow w_2 \rightarrow w_1 \rightarrow u) </tex> - искомый цикл длины <tex> 3 </tex>, q.e.d. | ||
}} | }} |
Версия 14:35, 26 февраля 2012
Теорема (Редеи-Камиона (для пути)): |
В любом турнире есть гамильтонов путь. |
Доказательство: |
Приведем доказательство по индукции по числу вершин в графе. Пусть - количество вершин в графе.База индукции: Очевидно, для утверждение верно.Индукционный переход: Пусть предположение верно для всех турниров с количеством вершин не более . Рассмотрим турнир с вершинами.Пусть – произвольная вершина турнира . Тогда турнир имеет вершин, значит, в нем есть гамильтонов путь . Одно из ребер или обязательно содержится в .
|
Теорема (Редеи-Камиона (для цикла)): | ||||||||||
В любом сильно связанном турнире есть гамильтонов цикл. | ||||||||||
Доказательство: | ||||||||||
Приведем доказательство по индукции по числу вершин в цикле. Пусть - количество вершин в графе.База индукции:
Индукционный переход:
| ||||||||||
Лемма (Следствие): |
Турнир является сильно связанным тогда и только тогда, когда он имеет гамильтонов цикл. |
См. также
Литература
- Асанов М., Баранский В., Расин В.: Дискретная математика: Графы, матроиды, алгоритмы
- Ф. Харари: Теория графов