Теорема Понтрягина-Куратовского — различия между версиями
(→Литература) |
|||
Строка 19: | Строка 19: | ||
<tex> G_2 </tex> подграф графа <tex> G </tex>, порождённый вершинами остальных компонент связности графа <tex> G - v </tex> и вершиной <tex> v </tex>. (рис. 1) | <tex> G_2 </tex> подграф графа <tex> G </tex>, порождённый вершинами остальных компонент связности графа <tex> G - v </tex> и вершиной <tex> v </tex>. (рис. 1) | ||
[[Файл:New.p-k.1.png|thumb|right|рис. 1]] | [[Файл:New.p-k.1.png|thumb|right|рис. 1]] | ||
− | Возьмём укладку графа <tex> G_1 </tex> на плоскости такую, что вершина <tex> v </tex> лежит на границе внешней грани. Ее можно получить, взяв любую укладку <tex> G_1 </tex> на плоскости, по ней построив укладку на шаре, используя обратную стереографическую проекцию, потом повернуть сферу так, чтоб <tex> v </tex> оказалась на внешней грани стереографической проекции повернутого шара. | + | Возьмём укладку графа <tex> G_1 </tex> на плоскости такую, что вершина <tex> v </tex> лежит на границе внешней грани. Ее можно получить, взяв любую укладку <tex> G_1 </tex> на плоскости, по ней построив укладку на шаре, используя обратную [http://en.wikipedia.org/wiki/Stereographic_projection | стереографическую проекцию], потом повернуть сферу так, чтоб <tex> v </tex> оказалась на внешней грани стереографической проекции повернутого шара. |
Затем во внешней грани графа <tex> G_1 </tex> возьмём укладку графа <tex> G_2 </tex> такую, что вершина <tex> v </tex> будет представлена на плоскости в двух экземплярах. (рис. 2) | Затем во внешней грани графа <tex> G_1 </tex> возьмём укладку графа <tex> G_2 </tex> такую, что вершина <tex> v </tex> будет представлена на плоскости в двух экземплярах. (рис. 2) |
Версия 23:49, 27 февраля 2012
Содержание
Определение: |
Граф | гомеоморфен , если можно получить из с помощью конечного числа применений процедур включения и исключения вершин степени 2.
Теорема: |
Граф планарен тогда и только тогда, когда он не содержит подграфов, гомеоморфных или . |
Доказательство: |
Доказательство необходимости можно посмотреть здесь, докажем достаточность. От противного: пусть существует непланарный граф, который не содержит подграфов, гомеоморфных или . Пусть — такой граф с наименьшим возможным числом рёбер, не содержащий изолированных вершин.G связенЕсли не связен, то его компоненты связности планарны и, следовательно, сам граф планарен.G — обыкновенный графВ самом деле, пусть в графе есть петля или кратное ребро . Тогда граф планарен. Добавляя ребро к графу получим, что граф он планарен.G — блокПусть, от противного, в графе есть точка сочленения . Через обозначим подграф графа , порождённый вершинами одной из компонент связности графа и вершинной , а через подграф графа , порождённый вершинами остальных компонент связности графа и вершиной . (рис. 1) Возьмём укладку графа на плоскости такую, что вершина лежит на границе внешней грани. Ее можно получить, взяв любую укладку на плоскости, по ней построив укладку на шаре, используя обратную [http://en.wikipedia.org/wiki/Stereographic_projection |
Литература
- Асанов М., Баранский В., Расин В. — Дискретная математика — Графы, матроиды, алгоритмы