МП-автоматы, допуск по пустому стеку и по допускающему состоянию, эквивалентность — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 31: Строка 31:
  
 
'''3.''' Каждый переход <tex>\mathcal{P_{N}}</tex> есть и у автомата <tex>\mathcal{P}_{T}</tex>. Тогда, согласно введенным начальному и заключительному состоянию, автомат <tex>\mathcal{P}_{T}</tex> может совершить следующие действия: <tex>(s, w, Z_{1})\vdash (s_{0}, w, Z_{0} Z_{1})\vdash^{*} (q, \varepsilon, Z_{1})\vdash (p, \varepsilon,Z_{1}) </tex>, что означает <tex>\mathcal{P}_{T}</tex> допускает слово <tex>w</tex> по заключительному состоянию <tex>p</tex>. }}
 
'''3.''' Каждый переход <tex>\mathcal{P_{N}}</tex> есть и у автомата <tex>\mathcal{P}_{T}</tex>. Тогда, согласно введенным начальному и заключительному состоянию, автомат <tex>\mathcal{P}_{T}</tex> может совершить следующие действия: <tex>(s, w, Z_{1})\vdash (s_{0}, w, Z_{0} Z_{1})\vdash^{*} (q, \varepsilon, Z_{1})\vdash (p, \varepsilon,Z_{1}) </tex>, что означает <tex>\mathcal{P}_{T}</tex> допускает слово <tex>w</tex> по заключительному состоянию <tex>p</tex>. }}
 +
 +
[[Категория: Теория формальных языков]]
 +
[[Категория: Контекстно-свободные грамматики]]

Версия 12:49, 2 марта 2012

Допуск по заключительному состоянию

Определение:
Пусть [math]\mathcal{P}=\langle Q, \Sigma, \Gamma, \delta, s, Z_{0}, T\rangle[/math]МП-автомат. Тогда языком, допускаемым автоматом [math]\mathcal{P}[/math] по заключительному состоянию, является [math]\mathcal {L(P)}=\{w\mid(s, w, Z_{0})\vdash^{*}(q, \varepsilon, \alpha)\} [/math] для некоторого состояния [math]q\in T[/math] и произвольной магазинной цепочки [math]\alpha[/math]. Начиная с стартовой вершины [math]s[/math] и с [math]w[/math] на входе, автомат [math]\mathcal {P}[/math] прочитывает слово [math]w[/math] и достигает допускающего состояния. Содержимое магазина в этот момент не имеет значения.


Допуск по пустому магазину

Определение:
Для МП-автомата [math]\mathcal{P}=\langle Q, \Sigma, \Gamma, \delta, s, Z_{0}\rangle[/math] определим множество допускаемых по пустому магазину слов как [math]\mathcal {N(P)}=\{w\mid(s, w, Z_{0})\vdash^{*}(q, \varepsilon, \varepsilon)\} [/math], где [math]q[/math] — произвольное состояние. Таким образом, автомат [math]\mathcal{P}[/math] прочитывает слово [math]w[/math], полностью опустошив свой магазин. Множество заключительных состояний [math]T[/math] не имеет значения.


Эквивалентность автоматов

Теорема:
Классы языков, допускаемых МП-автоматами по заключительному состоянию и по пустому магазину (стеку), совпадают.
Доказательство:
[math]\triangleright[/math]

[math]\Rightarrow[/math]
Исходя из МП-автомата [math]\mathcal{P}_{T}[/math], допускающего язык [math]L[/math] по заключительному состоянию, построим другой МП-автомат [math]\mathcal{P_{N}}[/math], который допускает язык [math]L[/math] по пустому стеку.

EqualStackAutomata.png

1. Добавим переходы по [math]\varepsilon[/math] из каждого допускающего состояния автомата [math]\mathcal{P}_{T}[/math] в новое состояние [math]p[/math], которое отвечает за очистку стека. Находясь в состоянии [math]p[/math], автомат [math]\mathcal{P_{N}}[/math] опустошает свой магазин и ничего не прочитывает на входе. Таким образом, как только исходный автомат [math]\mathcal{P}_{T}[/math] приходит в допускающее состояние, прочитав слово [math]w[/math], [math]\mathcal{P_{N}}[/math] опустошает свой магазин, также прочитав слово [math]w[/math].

2. Во избежание случая, когда [math]\mathcal{P}_{T}[/math] может опустошить свой магазин без допуска, [math]\mathcal{P_{N}}[/math] использует свой маркер дна [math]Z_{1}[/math]. Добавление нового стартового состояния [math]s[/math] позволяет затолкнуть маркер [math]Z_{0}[/math] автомата [math]\mathcal{P}_{T}[/math] в магазин и перейти в стартовое состояние [math]\mathcal{P}_{T}[/math].

3. Каждый переход [math]\mathcal{P}_{T}[/math] есть и у автомата [math]\mathcal{P_{N}}[/math], символ [math]Z_{1}[/math] хранится в магазине под всеми символами из [math]\Gamma[/math] и является символом, по которому нет переходов в [math]\mathcal{P}_{T}[/math]. Тогда [math]\mathcal{P_{N}}[/math] может совершить следующие действия: [math](s, w, Z_{1})\vdash (s_{0}, w, Z_{0} Z_{1})\vdash^{*} (q, \varepsilon, \alpha Z_{1})\vdash^{*} (p, \varepsilon,\varepsilon) [/math], что означает [math]\mathcal{P_{N}}[/math] допускает слово [math]w[/math] по пустому магазину.

[math]\Leftarrow[/math]
Исходя из МП-автомата [math]\mathcal{P}_{N}[/math], допускающего язык [math]L[/math] по пустому стеку, построим МП-автомат [math]\mathcal{P_{T}}[/math], допускающий [math]L[/math] по заключительному состоянию.

EqualAllowAutomataPict.png

1. Добавим новый символ [math]Z_1[/math], не принадлежащий [math]\Gamma[/math], который будем маркером дна магазина нового автомата, позволяющий узнать, когда [math]\mathcal{P_{N}}[/math] опустошает свой магазин. Если построенный автомат [math]\mathcal{P}_{T}[/math] видит на вершине стека свой маркер, то он знает, что [math]\mathcal{P_{N}}[/math] опустошает свой магазин на этом же входе.

2. Добавим новое допускающее состояние [math]p[/math], в которое автомат переходит, как только обнаруживает, что [math]\mathcal{P_{N}}[/math] опустошил свой магазин. Таким образом допущенное слово по пустому стеку, будет допускаться и по заключительному состоянию, используя [math]\varepsilon[/math] переходы в новое состояние.

3. Каждый переход [math]\mathcal{P_{N}}[/math] есть и у автомата [math]\mathcal{P}_{T}[/math]. Тогда, согласно введенным начальному и заключительному состоянию, автомат [math]\mathcal{P}_{T}[/math] может совершить следующие действия: [math](s, w, Z_{1})\vdash (s_{0}, w, Z_{0} Z_{1})\vdash^{*} (q, \varepsilon, Z_{1})\vdash (p, \varepsilon,Z_{1}) [/math], что означает [math]\mathcal{P}_{T}[/math] допускает слово [math]w[/math] по заключительному состоянию [math]p[/math].
[math]\triangleleft[/math]