333
правки
Изменения
→Свойства биномиальных деревьев
== Свойства биномиальных деревьев ==
'''Утверждение 1'''. Биномиальное дерево <tex>B_k</tex> с <tex>n</tex> вершинами:*имеет <tex>2^k</tex> узлов; ''Доказательство'':
Так как в дереве порядка <tex>k+1</tex> вдвое больше узлов, чем в дереве порядка <tex>k</tex>, а в дереве нулевого порядка <tex>1 = 2^0</tex> узел, то дерево порядка <tex>k</tex> имеет <tex>2^k</tex> узлов.
Так как в дереве порядка <tex>k+1</tex> высота больше на <tex>1</tex> (так как мы подвешиваем к текущему дереву дерево того же порядка), чем в дереве порядка <tex>k</tex>, а в дереве нулевого порядка высота <tex>0</tex> , то дерево порядка <tex>k</tex> имеет высоту <tex>k</tex>.
Докажем по индукции:
Рассмотрим <tex>i</tex> уровень дерева <tex>B_{k+1}</tex>. Дерево <tex>B_{k+1}</tex> было получено подвешиванием одного дерева порядка <tex>k</tex> к другому. Тогда на <tex>i</tex> уровне дерева <tex>B_{k+1}</tex> всего узлов <tex>{k\choose i} + {k\choose {i - 1}}</tex>, так как от подвешенного дерева в дерево порядка <tex>k+1</tex> нам пришли узлы глубины <tex>i-1</tex>. То для <tex>i</tex> уровня дерева <tex>B_{k+1}</tex> количество узлов <tex>{k\choose i} + {k\choose {i - 1}} ={{k + 1}\choose i} </tex>. То свойство доказано.
Так как в дереве порядка <tex>k+1</tex> степень корня больше на <tex>1</tex>, чем в дереве порядка <tex>k</tex>, а в дереве нулевого порядка степень корня <tex>0</tex>, то дерево порядка <tex>k</tex> имеет корень степени <tex>k</tex>. И так как при таком увеличении порядка(при переходе от дерева порядка <tex>k</tex> к <tex>k+1</tex>) в полученном дереве лишь степень корня возрастает, то доказываемый инвариант, то есть степень корня больше степени остальных вершин, не будет нарушаться.
Докажем это утверждение для корня. Степень остальных вершин меньше по предыдущему свойству. Так как степень корня дерева порядка <tex>k</tex> равна <tex>k</tex>, а узлов в этом дереве <tex>n = 2^k</tex>, то прологарифмировав обе части получаем, что <tex>k=O(\log(n))</tex>, то степень произвольного узла не более <tex>\log(n)</tex>.