Теорема о цикличности мультипликативной группы поля Z/pZ — различия между версиями
м |
м |
||
Строка 1: | Строка 1: | ||
− | В этом разделе мы будет рассматривать элементы мультипликативной группы поля < | + | В этом разделе мы будет рассматривать элементы мультипликативной группы поля <tex>\mathbb{Z}/p \mathbb{Z}</tex>, то есть вычетов по модулю <tex>p</tex>, причем <tex>p \in \mathbb{P}</tex>. |
Прежде чем доказывать теорему, докажем две леммы. | Прежде чем доказывать теорему, докажем две леммы. | ||
{{Лемма | {{Лемма | ||
Строка 5: | Строка 5: | ||
|about=1 | |about=1 | ||
|statement= | |statement= | ||
− | < | + | <tex>ord(ab)=lcm(ord(a), ord(b))</tex>, где <tex>ord(a)</tex> {{---}} [[порядок числа]] по модулю p, а <tex>lcm</tex> {{---}} [[наименьшее общее кратное]] двух чисел (least common multiple). |
|proof= | |proof= | ||
− | Рассмотрим < | + | Рассмотрим <tex>(ab)^k \equiv 1 \pmod p</tex>. Так как группа абелева {{---}} можем записать <tex>a^{k}b^{k} \equiv 1 \pmod p</tex>. Очевидно <tex>a^{k \cdot ord(a)}b^{k \cdot ord(a)}\equiv 1 \pmod p</tex>, однако из определения порядка числа следует <tex>a^{ord(a)}\equiv 1 \pmod p</tex>, а значит <tex>a^{k \cdot ord(a)}\equiv 1 \pmod p</tex>. Отсюда делаем вывод, что <tex>b^{k \cdot ord(a)}\equiv 1 \pmod p</tex>. Значит <tex>k \cdot ord(a)\vdots ord(b)</tex>. Аналогичным образом доказывается <tex>k \cdot ord(b)\vdots ord(a)</tex>. Из этих двух фактов, а так же из определения порядка числа, очевидно следует требуемое. |
}} | }} | ||
{{Лемма | {{Лемма | ||
Строка 13: | Строка 13: | ||
|about=2 | |about=2 | ||
|statement= | |statement= | ||
− | Пусть < | + | Пусть <tex>ord(a)=xy</tex> и <tex>gcd(x,y)=1</tex>. Тогда <tex>ord(a^x)=y</tex>. |
|proof= | |proof= | ||
− | Очевидно, что < | + | Очевидно, что <tex>(a^x)^y=1 \pmod p</tex>. Требуется доказать только тот факт, что <tex>y</tex> {{---}} минимальное такое число. Предположим, что <tex>ord(a^x)=f</tex>. Значит <tex>a^{xf}=1 \pmod p</tex>. Однако, по условию леммы имеем <tex>a^{xy}=1(p)</tex>, причем <tex>xy</tex> {{---}} минимальное такое число. Получаем <tex>xy\leqslant xf</tex>, значит <tex>y\leqslant f</tex>, что и требовалось доказать. |
}} | }} | ||
{{Теорема | {{Теорема |
Версия 08:22, 28 июня 2010
В этом разделе мы будет рассматривать элементы мультипликативной группы поля
, то есть вычетов по модулю , причем . Прежде чем доказывать теорему, докажем две леммы.Лемма (1): |
порядок числа по модулю p, а — наименьшее общее кратное двух чисел (least common multiple). , где — |
Доказательство: |
Рассмотрим | . Так как группа абелева — можем записать . Очевидно , однако из определения порядка числа следует , а значит . Отсюда делаем вывод, что . Значит . Аналогичным образом доказывается . Из этих двух фактов, а так же из определения порядка числа, очевидно следует требуемое.
Лемма (2): |
Пусть и . Тогда . |
Доказательство: |
Очевидно, что | . Требуется доказать только тот факт, что — минимальное такое число. Предположим, что . Значит . Однако, по условию леммы имеем , причем — минимальное такое число. Получаем , значит , что и требовалось доказать.
Теорема (О цикличности мультипликативной группы поля | .):
Мультипликативная группа поля циклична. |
Доказательство: |
Итак, нам требуется доказать существование порождающего элемента для нашей группы - то есть такого элемента | , что . Пусть по всем . Пусть теперь . - следует из определения . Значит , тогда по второй лемме . Таким образом мы можем найти такое число, что его порядок равен . Пусть . Тогда - искомый элемент. И правда - - по первой лемме. Очевидно порядок числа не может быть больше , значит . С другой стороны - выполняется для всех ненулевых вычетов по модулю , которых штук, а количество решений этого сравнения - . Таким образом . Значит , что и требовалось.