СНМ(списки с весовой эвристикой) — различия между версиями
(→Источники) |
(→Доказательство оценки времени выполнения) |
||
Строка 18: | Строка 18: | ||
{{Утверждение | {{Утверждение | ||
− | |statement=При использовании связанных списков для представления СНМ и применении весовой эвристики, последовательность из | + | |statement=При использовании связанных списков для представления СНМ и применении весовой эвристики, последовательность из m операций makeSet, union, и findSet, n из которых составляют операции makeSet, требует для выполнения <tex>O(m+n \log n)</tex> времени. |
− | |proof = Вычислим верхнюю границу количества обновлений указателя на представителя для каждого множества из | + | |proof = Вычислим верхнюю границу количества обновлений указателя на представителя для каждого множества из n элементов. Рассмотрим некий фиксированный объект. Когда мы обновляем указатель на представителя в объекте, он должен находиться в меньшем из множеств. Следовательно, при первом обновлении образованное множество хранит не менее 2 элементов, при втором не менее 4 элементов, и т.д. Продолжая рассуждение приходим к выводу о том, что при k <tex>\leqslant\</tex> n, после того как указатель на представителя в объекте обновлен <tex>\left\lceil \log k \right\rceil</tex>, полученное в результате множество должно иметь не менее k элементов. Поскольку максимальное множество может иметь не более n элементов, во всех операциях union указатель на представителя у каждого объекта может быть обновлен не более <tex>\left\lceil \log n \right\rceil</tex> раз. Необходимо также отметить, что обновление указателя на голову и next представителя, а также обновление длины списка при выполнении операции union требует <tex>O(1)</tex> времени. Таким образом, общее время, необходимое для обновления n объектов, составляет <tex>O(n \log n)</tex>. |
Отсюда легко понять, что время необходимое для выполнения всей последовательности из m операций составит <tex>O(m + n \log n)</tex>. <tex>O(m)</tex> операций makeSet и findSet, работающих за константное время и суммарное время работы операций union для каждого объекта.}} | Отсюда легко понять, что время необходимое для выполнения всей последовательности из m операций составит <tex>O(m + n \log n)</tex>. <tex>O(m)</tex> операций makeSet и findSet, работающих за константное время и суммарное время работы операций union для каждого объекта.}} | ||
Версия 20:41, 18 марта 2012
Содержание
Определение
Определение: |
Весовая эвристика(weighted-union heuristic) - улучшение наивной реализации СНМ, при котором список включает поле длины списка, и добавление идет всегда меньшего списка к большему. |
Проблема наивной реализации
Рассмотрим модифицированную наивную реализацию системы непересекающихся множеств с помощью списка. Кроме ссылок на следующий элемент будем хранить ссылку на представителя, а для представителя ссылку на голову списка. При использовании такого представления, время работы процедур makeSet и findSet —
. Процедуру union(x, y) мы выполняем, добавляя список с элементом x в список содержащий элемент y. При этом мы должны обновить указатели на представителя у каждого объекта, который содержался в списке, содержащем x. Не трудно привести последовательность из m операций над n объектами, которая требует времени. Предположим, что у нас есть объекты . Мы выполняем последовательность из n операций makeSet(или init), за которой следует последовательность из n - 1 операции union. m = n + (n - 1) = 2n - 1. На выполнение n операций makeSet мы тратим время . Поскольку i-я операция union обновляет i объектов, общее количество объектов, обновленных всеми n - 1 операциями union равно . Общее количество операций равно 2n - 1, так что каждая операция в среднем требует для выполнения . Таким образом амортизированное время выполнения операции union составляет . В худшем случае представленная реализация процедуры union требует в среднем времени на вызов, поскольку может оказаться, что мы присоединяем длинный список к короткому и должны при этом обновить поля указателей на представителя всех членов длинного списка.Реализация с весовой эвристикой
Предположим теперь, что каждый список включает также поле длины списка и что мы всегда добавляем меньший список к большему(при одинаковых длинах порядок добавления безразличен). При такой простейшей весовой эвристике одна операция union может потребовать
действий, если оба множества имеют членов. Однако последовательность из m операций makeSet, union и findSet, n из которых составляют операции makeSet, требует для выполнения времени.Доказательство оценки времени выполнения
Утверждение: |
При использовании связанных списков для представления СНМ и применении весовой эвристики, последовательность из m операций makeSet, union, и findSet, n из которых составляют операции makeSet, требует для выполнения времени. |
Вычислим верхнюю границу количества обновлений указателя на представителя для каждого множества из n элементов. Рассмотрим некий фиксированный объект. Когда мы обновляем указатель на представителя в объекте, он должен находиться в меньшем из множеств. Следовательно, при первом обновлении образованное множество хранит не менее 2 элементов, при втором не менее 4 элементов, и т.д. Продолжая рассуждение приходим к выводу о том, что при k Отсюда легко понять, что время необходимое для выполнения всей последовательности из m операций составит n, после того как указатель на представителя в объекте обновлен , полученное в результате множество должно иметь не менее k элементов. Поскольку максимальное множество может иметь не более n элементов, во всех операциях union указатель на представителя у каждого объекта может быть обновлен не более раз. Необходимо также отметить, что обновление указателя на голову и next представителя, а также обновление длины списка при выполнении операции union требует времени. Таким образом, общее время, необходимое для обновления n объектов, составляет . . операций makeSet и findSet, работающих за константное время и суммарное время работы операций union для каждого объекта. |
Другие реализации
Источники
- Томас Х. Кормен, Чарльз И. Лейзерсон, Рональд Л. Ривест, Клиффорд Штайн Алгоритмы: построение и анализ — 2-е изд. — М.: «Вильямс», 2007. — с. 585—588. — ISBN 5-8489-0857-4