|
|
(не показано 6 промежуточных версий 2 участников) |
Строка 1: |
Строка 1: |
− | == Определение ==
| + | #перенаправление [[СНМ (списки с весовой эвристикой)]] |
− | {{Определение|
| |
− | definition =
| |
− | '''Весовая эвристика'''(weighted-union heuristic) - улучшение наивной реализации СНМ, при котором список включает поле длины списка, и добавление идет всегда меньшего списка к большему.
| |
− | }}
| |
− | | |
− | == Проблема наивной реализации ==
| |
− | | |
− | Рассмотрим модифицированную наивную реализацию системы непересекающихся множеств с помощью списка. Кроме ссылок на следующий элемент будем хранить ссылку на представителя, а для представителя ссылку на голову списка. При использовании такого представления, время работы процедур makeSet и findSet {{ --- }} <tex>O(1)</tex>. Процедуру union(x, y) мы выполняем, добавляя список с элементом x в список содержащий элемент y. При этом мы должны обновить указатели на представителя у каждого объекта, который содержался в списке, содержащем x. Не трудно привести последовательность из m операций над n объектами, которая требует <tex>O(n^2)</tex> времени. Предположим, что у нас есть объекты <tex>x_1, x_2, ... x_n</tex>. Мы выполняем последовательность из n операций makeSet(или init), за которой следует последовательность из n - 1 операции union. m = n + (n - 1) = 2n - 1. На выполнение n операций makeSet мы тратим время <tex>O(n)</tex>. Поскольку i-я операция union обновляет i объектов, общее количество объектов, обновленных всеми n - 1 операциями union равно <tex>\sum\limits_{i=1}^{n-1} i = O(n^2)</tex>. Общее количество операций равно 2n - 1, так что каждая операция в среднем требует для выполнения <tex>O(n)</tex>. Таким образом амортизированное время выполнения операции union составляет <tex>O(n)</tex>. В худшем случае представленная реализация процедуры union требует в среднем <tex>O(n)</tex> времени на вызов, поскольку может оказаться, что мы присоединяем длинный список к короткому и должны при этом обновить поля указателей на представителя всех членов длинного списка.
| |
− | | |
− | [[Файл:ve.png]]
| |
− | | |
− | == Реализация с весовой эвристикой ==
| |
− | | |
− | Предположим теперь, что каждый список включает также поле длины списка и что мы всегда добавляем меньший список к большему(при одинаковых длинах порядок добавления безразличен). При такой простейшей весовой эвристике одна операция union может потребовать <tex>\Omega(n)</tex> действий, если оба множества имеют <tex>\Omega(n)</tex> членов. Однако последовательность из m операций makeSet, union и findSet, n из которых составляют операции makeSet, требует для выполнения <tex>O(m + n \log n)</tex> времени.
| |
− | | |
− | == Доказательство оценки времени выполнения ==
| |
− | | |
− | {{Утверждение
| |
− | |statement=При использовании связанных списков для представления СНМ и применении весовой эвристики, последовательность из <tex>m</tex> операций makeSet, union, и findSet, <tex>n</tex> из которых составляют операции makeSet, требует для выполнения <tex>O(m+n \log n)</tex> времени.
| |
− | |proof = Вычислим верхнюю границу количества обновлений указателя на представителя для каждого множества из <tex>n</tex> элементов. Рассмотрим некий фиксированный объект. Когда мы обновляем указатель на представителя в объекте, он должен находиться в меньшем из множеств. Следовательно, при первом обновлении образованное множество хранит не менее 2 элементов, при втором не менее 4 элементов, и т.д. Продолжая рассуждение приходим к выводу о том, что при <tex>k \leqslant\ n</tex>, после того как указатель на представителя в объекте обновлен <tex>\left\lceil \log k \right\rceil</tex>, полученное в результате множество должно иметь не менее <tex>k</tex> элементов. Поскольку максимальное множество может иметь не более <tex>n</tex> элементов, во всех операциях union указатель на представителя у каждого объекта может быть обновлен не более <tex>\left\lceil \log n \right\rceil</tex> раз. Необходимо также отметить, что обновление указателя на голову и next представителя, а также обновление длины списка при выполнении операции union требует <tex>O(1)</tex> времени. Таким образом, общее время, необходимое для обновления <tex>n</tex> объектов, составляет <tex>O(n \log n)</tex>.
| |
− | Отсюда легко понять, что время необходимое для выполнения всей последовательности из m операций составит <tex>O(m + n \log n)</tex>. <tex>O(m)</tex> операций makeSet и findSet, работающих за константное время и суммарное время работы операций union для каждого объекта.}}
| |
− | | |
− | == Другие реализации ==
| |
− | * [[СНМ(наивные реализации)]]
| |
− | * [[СНМ(реализация с помощью леса корневых деревьев)]]
| |
− | | |
− | == Источники ==
| |
− | * Т. Кормен - Алгоритмы, построение и анализ. Второе издание. Часть V. Глава 21.
| |
− | | |
− | == Ссылки ==
| |
− | * [http://habrahabr.ru/blogs/algorithm/104772/ Система непересекающихся множеств и её применения]
| |
− | | |
− | [[Категория: Дискретная математика и алгоритмы]]
| |