АВЛ-дерево — различия между версиями
(→Высота дерева) |
|||
Строка 42: | Строка 42: | ||
Все операции вращения, очевидно, требуют <tex>O(1)</tex> операций. | Все операции вращения, очевидно, требуют <tex>O(1)</tex> операций. | ||
− | + | == Операции == | |
− | == Добавление вершины == | + | === Добавление вершины === |
Процесс включения вершины состоит из двух частей: | Процесс включения вершины состоит из двух частей: | ||
# Прохода по пути поиска, пока не убедимся, что ключа в дереве нет. | # Прохода по пути поиска, пока не убедимся, что ключа в дереве нет. | ||
Строка 50: | Строка 50: | ||
Так как в процессе добавления вершины мы рассматриваем не более, чем <tex> O(h) </tex> вершин дерева, и для каждой запускаем балансировку не более одного раза, то суммарное количество операций при включении новой вершины в дерево составляет <tex> O(\log{n}) </tex> операций. | Так как в процессе добавления вершины мы рассматриваем не более, чем <tex> O(h) </tex> вершин дерева, и для каждой запускаем балансировку не более одного раза, то суммарное количество операций при включении новой вершины в дерево составляет <tex> O(\log{n}) </tex> операций. | ||
− | == Удаление вершины == | + | === Удаление вершины === |
Для простоты опишем рекурсивный алгоритм удаления. | Для простоты опишем рекурсивный алгоритм удаления. | ||
Если вершина - лист, то [[Дерево поиска, наивная реализация#Удаление|удалим]] её и вызовем балансировку всех её предков в порядке от родителя к корню. | Если вершина - лист, то [[Дерево поиска, наивная реализация#Удаление|удалим]] её и вызовем балансировку всех её предков в порядке от родителя к корню. | ||
Строка 57: | Строка 57: | ||
В результате указанных действий процедура удаления вызывается не более 3 раз, так как у вершины, удаляемой по 2-му вызову, нет хотя бы одного из поддеревьев. На балансировку суммарно тратится, как и ранее, <tex> O(h) </tex> операций. Таким образом, требуемое количество действий {{---}} <tex> O(\log{n}) </tex>. | В результате указанных действий процедура удаления вызывается не более 3 раз, так как у вершины, удаляемой по 2-му вызову, нет хотя бы одного из поддеревьев. На балансировку суммарно тратится, как и ранее, <tex> O(h) </tex> операций. Таким образом, требуемое количество действий {{---}} <tex> O(\log{n}) </tex>. | ||
− | == Поиск вершины, минимум/максимум в дереве, etc. == | + | === Поиск вершины, минимум/максимум в дереве, etc. === |
Остальные операции не меняют структуры дерева, поэтому выполняются так же, как и в [[Дерево поиска, наивная реализация|наивной реализации]] дерева поиска. | Остальные операции не меняют структуры дерева, поэтому выполняются так же, как и в [[Дерево поиска, наивная реализация|наивной реализации]] дерева поиска. | ||
Версия 18:14, 24 марта 2012
АВЛ-дерево — сбалансированное двоичное дерево поиска, в котором поддерживается следующее свойство: для каждой его вершины высота её двух поддеревьев различается не более чем на 1.
АВЛ-деревья названы по первым буквам фамилий их изобретателей, Г. М. Адельсона-Вельского и Е. М. Ландиса, которые впервые предложили использовать АВЛ-деревья в 1962 году.
Содержание
Высота дерева
Теорема: |
АВЛ-дерево с ключами имеет высоту . |
Доказательство: |
Высоту поддерева с корнем Пусть будем обозначать как , высоту поддерева — как . — минимальное число вершин в AVL-дереве высоты . Тогда, как легко видеть, , откуда , где -ое число Фибоначчи. , . Делая замену , получаем, что высота AVL-дерева из n вершин — . |
Балансировка
Балансировкой вершины называется операция, которая в случае разницы высот левого и правого поддеревьев
, изменяет связи предок-потомок в поддереве данной вершины так, чтобы восстановилось свойство дерева , иначе ничего не меняет.Указанный результат получается вращениями поддерева данной вершины. Для балансировки вершины используются один из 4 типов вращений:
Тип вращения | Иллюстрация | Когда используется |
---|---|---|
Малое левое вращение | и . | |
Большое левое вращение | и . | |
Малое правое вращение | и . | |
Большое правое вращение | и . |
В каждом случае операция приводит к нужному результату, а полная высота уменьшается не более чем на 1 и не может увеличиться.
Все операции вращения, очевидно, требуют
операций.Операции
Добавление вершины
Процесс включения вершины состоит из двух частей:
- Прохода по пути поиска, пока не убедимся, что ключа в дереве нет.
- "Отступления" назад по пути поиска, вплоть до корня и пересчета высот в каждой вершине на обратном пути. При необходимости осуществляется балансировка.
Так как в процессе добавления вершины мы рассматриваем не более, чем
вершин дерева, и для каждой запускаем балансировку не более одного раза, то суммарное количество операций при включении новой вершины в дерево составляет операций.Удаление вершины
Для простоты опишем рекурсивный алгоритм удаления. Если вершина - лист, то удалим её и вызовем балансировку всех её предков в порядке от родителя к корню. Иначе найдём самую близкую по значению вершину и переместим её на место удаляемой вершины, при этом вызвав процедуру её удаления.
В результате указанных действий процедура удаления вызывается не более 3 раз, так как у вершины, удаляемой по 2-му вызову, нет хотя бы одного из поддеревьев. На балансировку суммарно тратится, как и ранее,
операций. Таким образом, требуемое количество действий — .Поиск вершины, минимум/максимум в дереве, etc.
Остальные операции не меняют структуры дерева, поэтому выполняются так же, как и в наивной реализации дерева поиска.