АВЛ-дерево — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Высота дерева)
(Слияние двух AVL-деревьев)
Строка 151: Строка 151:
  
  
[[Файл: Avltree1.jpg]]
+
[[Файл: Navltree1.jpg]]
  
 
В дереве <tex>T_1</tex> удаляем самую правую вершину, назовём её <tex>b</tex>. Высота дерева <tex>T_1</tex> может уменьшиться на единицу. В дереве <tex>T_2</tex> идём от корня всегда в левое поддерево и, когда высота этого поддерева <tex>P</tex> будет равна высоте дерева <tex>T_1</tex>, делаем новое дерево <tex>S</tex>, корнем <tex>S</tex> будет вершина <tex>b</tex>, левым поддеревом будет дерево <tex>T_1</tex>, а правым дерево <tex>P</tex>. Теперь в дереве <tex>T_2</tex> у вершины, в которой мы остановились при спуске, левым поддеревом делаем дерево <tex>S</tex> и запускаем балансировку. Таким образом, дерево <tex>T_2</tex> будет результатом слияния двух АВЛ-деревьев.
 
В дереве <tex>T_1</tex> удаляем самую правую вершину, назовём её <tex>b</tex>. Высота дерева <tex>T_1</tex> может уменьшиться на единицу. В дереве <tex>T_2</tex> идём от корня всегда в левое поддерево и, когда высота этого поддерева <tex>P</tex> будет равна высоте дерева <tex>T_1</tex>, делаем новое дерево <tex>S</tex>, корнем <tex>S</tex> будет вершина <tex>b</tex>, левым поддеревом будет дерево <tex>T_1</tex>, а правым дерево <tex>P</tex>. Теперь в дереве <tex>T_2</tex> у вершины, в которой мы остановились при спуске, левым поддеревом делаем дерево <tex>S</tex> и запускаем балансировку. Таким образом, дерево <tex>T_2</tex> будет результатом слияния двух АВЛ-деревьев.
  
[[Файл: Avltree2.jpg]]
+
[[Файл: Navltree2.jpg]]
  
 
== Литература ==
 
== Литература ==

Версия 19:32, 1 апреля 2012

АВЛ-дерево — сбалансированное двоичное дерево поиска, в котором поддерживается следующее свойство: для каждой его вершины высота её двух поддеревьев различается не более чем на 1.

АВЛ-деревья названы по первым буквам фамилий их изобретателей, Г. М. Адельсона-Вельского и Е. М. Ландиса, которые впервые предложили использовать АВЛ-деревья в 1962 году.

Высота дерева

Теорема:
АВЛ-дерево с [math]n[/math] ключами имеет высоту [math]h = O(\log N)[/math].
Доказательство:
[math]\triangleright[/math]

Высоту поддерева с корнем [math]x[/math] будем обозначать как [math]h(x)[/math], высоту поддерева [math]T[/math] — как [math]h(T)[/math].

Лемма:
Пусть [math]m_h[/math] — минимальное число вершин в AVL-дереве высоты [math]h[/math], тогда [math]m_h = F_{h+2} - 1[/math], где [math]F_h - h[/math]-ое число Фибоначчи.
Доказательство:
[math]\triangleright[/math]

Если [math]m_h[/math] — минимальное число вершин в AVL-дереве высоты [math]h[/math]. Тогда, как легко видеть, [math]m_{h+2} = m_{h+1} + m_h + 1[/math]. Равенство [math]m_h = F_{h+2} - 1[/math] докажем по индукции.

База индукции [math]m_1 = F_3 - 1[/math] — верно, [math]m_1 = 1, F_3 = 2[/math].

Допустим [math]m_h = F_{h+2} - 1[/math] — верно.

Тогда [math]m_{h+1} = m_h + m_{h-1} + 1 = F_{h+2} - 1 + F_{h+1} - 1 + 1 = F_{h+3} - 1[/math].

Таким образом, равенство [math]m_h = F_{h+2} - 1[/math] — доказано.
[math]\triangleleft[/math]


[math]F_h = \Omega(\varphi^h)[/math], [math]\varphi = \frac{ \sqrt{5}+1}{2}[/math]. То есть

[math]n \geqslant \varphi^{h}[/math]

Логарифмируя по основанию [math]\varphi[/math], получаем

[math]\log_{\varphi}n \geqslant h[/math]

Таким образом, получаем, что высота AVL-дерева из n вершин — [math]O(\log{n})[/math].
[math]\triangleleft[/math]

Балансировка

Балансировкой вершины называется операция, которая в случае разницы высот левого и правого поддеревьев [math]|h(L) - h(R)| = 2[/math], изменяет связи предок-потомок в поддереве данной вершины так, чтобы восстановилось свойство дерева [math]|h(L) - h(R)| \le 1[/math], иначе ничего не меняет. Для балансировки будем хранить для каждой вершины разницу между высотой её левого и правого поддерева [math]diff[i] = h(L) - h(R)[/math]

Для балансировки вершины используются один из 4 типов вращений:

Тип вращения Иллюстрация Когда используется Расстановка балансов
Малое левое вращение AVL RR.GIF [math]h(b) - h(L) = 2[/math] и [math]h(C) \le h(R)[/math].

[math]diff[a] = -2[/math] и [math]diff[b] = -1[/math]

или

[math]diff[a] = -2[/math] и [math]diff[b] = 0[/math].


[math]diff[a] = 0[/math] и [math]diff[b] = 0[/math]


[math]diff[a] = -1[/math] и [math]diff[b] = 1[/math]

Большое левое вращение AVL RL.GIF [math]h(b) - h(L) = 2[/math] и [math]h(c) \gt h(R)[/math].

[math]diff[a] = -2[/math] , [math]diff[b] = 1[/math] и [math]diff[c] = 1[/math]

или

[math]diff[a] = -2[/math], [math]diff[b] = 1[/math] и [math]diff[c] = -1[/math]

или

[math]diff[a] = -2[/math], [math]diff[b] = 1[/math] и [math]diff[c] = 0[/math].


[math]diff[a] = 0[/math], [math]diff[b] = -1[/math] и [math]diff[c] = 0[/math]


[math]diff[a] = 1[/math], [math]diff[b] = 0[/math] и [math]diff[c] = 0[/math]


[math]diff[a] = 0[/math], [math]diff[b] = 0[/math] и [math]diff[c] = 0[/math]

Малое правое вращение AVL LL.GIF [math]h(b) - h(R) = 2[/math] и [math]h(C) \le h(L)[/math].

[math]diff[a] = 2[/math] и [math]diff[b] = 1[/math].

или

[math]diff[a] = 2[/math] и [math]diff[b] = 0[/math].


[math]diff[a] = 0[/math] и [math]diff[b] = 0[/math]


[math]diff[a] = 1[/math] и [math]diff[b] = -1[/math]

Большое правое вращение AVL LR.GIF [math]h(b) - h(R) = 2[/math] и [math]h(c) \gt h(L)[/math].

[math]diff[a] = 2[/math], [math]diff[b] = -1[/math] и [math]diff[c] = 1[/math]

или

[math]diff[a] = 2[/math], [math]diff[b] = -1[/math] и [math]diff[c] = -1[/math]

или

[math]diff[a] = 2[/math], [math]diff[b] = -1[/math] и [math]diff[c] = 0[/math].


[math]diff[a] = -1[/math], [math]diff[b] = 0[/math] и [math]diff[c] = 0[/math]


[math]diff[a] = 0[/math], [math]diff[b] = 1[/math] и [math]diff[c] = 0[/math]


[math]diff[a] = 0[/math], [math]diff[b] = 0[/math] и [math]diff[c] = 0[/math]

В каждом случае операция приводит к нужному результату, а полная высота уменьшается не более чем на 1 и не может увеличиться.

Все операции вращения, очевидно, требуют [math]O(1)[/math] операций.

Операции

Добавление вершины

Пусть нам надо добавить ключ [math]t[/math]. Будем спускаться по дереву, как при поиске ключа [math]t[/math]. Если мы стоим в вершине [math]a[/math] и нам надо идти в поддерево, которого нет, то делаем ключ [math]t[/math] листом, а вершину [math]a[/math] его корнем. Дальше поднимаемся вверх по пути поиска и пересчитываем баланс у вершин. Если мы поднялись в вершину [math]i[/math] из левого поддерева, то [math]diff[i][/math] увеличивается на единицу, если из правого, то уменьшается на единицу. Если пришли в вершину и её баланс стал равным нулю, то это значит высота поддерева не изменилась и подъём останавливается. Если пришли в вершину и её баланс стал равным 1 или -1, то это значит высота поддерева изменилась и подъём продолжается. Если пришли в вершину и её баланс стал равным 2 или -2, то делаем одно из четырёх вращений и, если после вращения баланс стал равным нулю, то останавливаемся, иначе продолжаем подъём.

Так как в процессе добавления вершины мы рассматриваем не более, чем [math] O(h) [/math] вершин дерева, и для каждой запускаем балансировку не более одного раза, то суммарное количество операций при включении новой вершины в дерево составляет [math] O(\log{n}) [/math] операций.

Удаление вершины

Для простоты опишем рекурсивный алгоритм удаления. Если вершина - лист, то удалим её, иначе найдём самую близкую по значению вершину [math]a[/math], переместим её на место удаляемой вершины и удалим вершину [math]a[/math]. От удалённой вершины будем подниматься вверх к корню и пересчитывать баланс у вершин. Если мы поднялись в вершину [math]i[/math] из левого поддерева, то [math]diff[i][/math] уменьшается на единицу, если из правого, то увеличивается на единицу. Если пришли в вершину и её баланс стал равным 1 или -1, то это значит, что высота этого поддерева не изменилась и подъём можно остановить. Если баланс вершины стал равным нулю, то высота поддерева уменьшилась и подъём нужно продолжить. Если баланс стал равным 2 или -2, следует выполнить одно из четырёх вращений и, если после вращений баланс вершины стал равным нулю, то подъём продолжается, иначе останавливается.

В результате указанных действий на удаление вершины и балансировку суммарно тратится, как и ранее, [math] O(h) [/math] операций. Таким образом, требуемое количество действий — [math] O(\log{n}) [/math].

Поиск вершины, минимум/максимум в дереве, etc.

Остальные операции не меняют структуры дерева, поэтому выполняются так же, как и в наивной реализации дерева поиска.

Слияние двух AVL-деревьев

Дано два дерева [math]T_1[/math] и [math]T_2[/math], все ключи в [math]T_1[/math] меньше ключей в [math]T_2[/math], [math]h(T_1) \le h(T_2)[/math].


Navltree1.jpg

В дереве [math]T_1[/math] удаляем самую правую вершину, назовём её [math]b[/math]. Высота дерева [math]T_1[/math] может уменьшиться на единицу. В дереве [math]T_2[/math] идём от корня всегда в левое поддерево и, когда высота этого поддерева [math]P[/math] будет равна высоте дерева [math]T_1[/math], делаем новое дерево [math]S[/math], корнем [math]S[/math] будет вершина [math]b[/math], левым поддеревом будет дерево [math]T_1[/math], а правым дерево [math]P[/math]. Теперь в дереве [math]T_2[/math] у вершины, в которой мы остановились при спуске, левым поддеревом делаем дерево [math]S[/math] и запускаем балансировку. Таким образом, дерево [math]T_2[/math] будет результатом слияния двух АВЛ-деревьев.

Navltree2.jpg

Литература