Дискретное логарифмирование в группе — различия между версиями
Vprisivko (обсуждение | вклад) (Создание статьи (перенесена из Вычисление порядка элемента в группе)) |
(нет различий)
|
Версия 23:22, 28 июня 2010
Эта статья находится в разработке!
Рассмотрим конечную группу
Теперь рассмотрим обобщенную задачу поиска порядка, также называемую задачей дискретного логарифмирования: для заданных и из группы найти такое минимальное , что .
Очевидно, (следует из принципа Дирихле). Пусть . Будем искать в виде , где и .
Далее мы выписываем все полученные выражения для левой и правой частей при всех допустимых
и (или складываем в удобную структуру данных: отсортированный массив, хеш, дерево и т. д.). После чего ищем пересечение. Для каждого элемента одной части поиск в структуре данных для другой части (в случае с отсортированным массивом) занимает время . Учитывая, что время на предварительную обработку , общее время работы алгоритма − .