Декартово дерево — различия между версиями
(→Высота в декартовом дереве) |
(→Высота в декартовом дереве) |
||
Строка 173: | Строка 173: | ||
Подставив последнее в нашу формулу с математическим ожиданием получим: | Подставив последнее в нашу формулу с математическим ожиданием получим: | ||
− | : <tex>E(d(x_k)) = \sum\limits_{i = 1}^{n} Pr[A_{i,k} = 1] = \sum\limits_{i = 1}^{k - 1} \frac{1}{k - i + 1} + \sum\limits_{i = k + 1}^{n} \frac{1}{i - k + 1} \le ln(k) + ln(n-k)</tex> | + | : <tex>E(d(x_k)) = \sum\limits_{i = 1}^{n} Pr[A_{i,k} = 1] = \sum\limits_{i = 1}^{k - 1} \frac{1}{k - i + 1} + \sum\limits_{i = k + 1}^{n} \frac{1}{i - k + 1} \le ln(k) + ln(n-k) + 2</tex> |
− | : здесь мы использовали <tex>\sum\limits_{i = 1}^{n} \frac{1}{i} \le ln(n)</tex> | + | : здесь мы использовали <tex>\sum\limits_{i = 1}^{n} \frac{1}{i} \le ln(n) + 1</tex> |
В итоге мы получили что <tex>E(d(x_k)) = O(ln(n))</tex>. | В итоге мы получили что <tex>E(d(x_k)) = O(ln(n))</tex>. |
Версия 00:32, 15 апреля 2012
Эта статья про Курево
Декартово дерево — это структура данных, объединяющая в себе бинарное дерево поиска и бинарную кучу (отсюда и второе её название: treap (tree + heap) и дерамида (дерево + пирамида), так же существует название курево (куча + дерево).
Более строго, это бинарное дерево, в узлах которого хранится пары двоичным деревом поиска по и пирамидой по . Предполагая, что все и все являются различными, получаем, что если некоторый элемент дерева содержит , то у всех элементов в левом поддереве , у всех элементов в правом поддереве , а также и в левом, и в правом поддереве имеем: .
, где - это ключ, а - это приоритет. Также оно являетсяДерамиды были предложены Сиделем (Siedel) и Арагоном (Aragon) в 1996 г.
Содержание
Операции в декартовом дереве
Split
Операция
(разрезать) позволяет сделать следующее: разрезать декартово дерево по ключу и получить два других декартовых дерева: и , причем в находятся все ключи дерева , не большие , а в — большие ..
Эта операция устроена следующим образом.
Рассмотрим случай, в котором требуется разрезать дерево по ключу, большему ключа корня. Посмотрим, как будут устроены результирующие деревья
и :- : левое поддерево совпадёт с левым поддеревом . Для нахождения правого поддерева , нужно разрезать правое поддерево на и по ключу и взять .
- совпадёт с .
Случай, в котором требуется разрезать дерево по ключу, меньше либо равному ключа в корне, рассматривается симметрично.
Псевдокод:
Treap T // декартово дерево int k // ключ по которому нужно разрезать декартово дерево Split (Treap T, int k, Treap T1, Treap T2) { // T1, T2 - результат процедуры Split if (T == NULL) { T1 = T2 = NULL } else if (k > T.x) { Split (T.right, k, T.right, T2) T1 = T } else { Split (T.left, k, T1, T.left) T2 = T } }
Оценим время работы операции
. Во время выполнения вызывается одна операция для дерева хотя бы на один меньшей высоты и делается ещё операция. Тогда итоговая трудоёмкость этой операции равна , где — высота дерева.Merge
Рассмотрим вторую операцию с декартовыми деревьями —
(слить).С помощью этой операции можно слить два декартовых дерева в одно. Причем, все ключи в первом(левом) дереве должны быть меньше, чем ключи во втором(правом). В результате получается дерево, в котором есть все ключи из первого и второго деревьев.
Рассмотрим принцип работы этой операции. Пусть нужно слить деревья
и . Тогда, очевидно, у результирующего дерева есть корень. Корнем станет вершина из или с наибольшим ключом . Но вершина с самым большим из всех вершин деревьев и может быть только либо корнем , либо корнем . Рассмотрим случай, в котором корень имеет больший , чем корень . Случай, в котором корень имеет больший , чем корень , симметричен этому.Если
корня больше корня , то он и будет являться корнем. Тогда левое поддерево совпадёт с левым поддеревом . Справа же нужно подвесить объединение правого поддерева и дерева .Псевдокод:
Treap T // результат процедуры Merge Treap T1, T2 // сливаемые деревья Merge (Treap T, Treap T1, Treap T2) { if (T1 == NULL || T2 == NULL) { if (T1 != NULL) { T = T1 } else { T = T2 } } else if (T1.y > T2.y) { Merge (T1.right, T1.right, T2) T = T1 } else { Merge (T2.left, T1, T2.left) T = T2 } }
Рассуждая аналогично операции
приходим к выводу, что трудоёмкость операции равна , где — высота дерева.Insert
Операция
добавляет в дерево элемент , где — ключ, а — приоритет.- Реализация №1
- Разобьём наше дерево по ключу, который мы хотим добавить, то есть .
- Сливаем первое дерево с новым элементом, то есть .
- Сливаем получившиеся дерево со вторым, то есть .
- Реализация №2
- Сначала спускаемся по дереву (как в обычном бинарном дереве поиска по ), но останавливаемся на первом элементе, в котором значение приоритета оказалось меньше .
- Теперь вызываем от найденного элемента (от элемента вместе со всем его поддеревом)
- Полученные и записываем в качестве левого и правого сына добавляемого элемента.
- Полученное дерево ставим на место элемента, найденного в первом пункте.
Remove
Операция
удаляет из дерева элемент с ключом .- Реализация №1
- Разобьём наше дерево по ключу, который мы хотим удалить, то есть .
- Теперь отделяем от первого дерева элемент , опять таки разбивая по ключу , то есть .
- Сливаем первое дерево со вторым, то есть .
- Реализация №2
- Спускаемся по дереву (как в обычном бинарном дереве поиска по ), ища удаляемый элемент.
- Найдя элемент, вызываем его левого и правого сыновей
- Результат процедуры ставим на место удаляемого элемента.
Случайные ключи
Мы уже выяснили, что сложность операций с декартовым деревом линейно зависит от его высоты. В действительности высота декартова дерева может быть линейной относительно его размеров. Например, высота декартова дерева, построенного по набору ключей
, будет равна . Во избежание таких случаев, полезным оказывается выбирать приоритеты в ключах случайно.Высота в декартовом дереве
Теорема: | ||||||
Декартово дерево из случайными величинами одного и того же распределения, имеет высоту . узлов, ключи которых являются независимыми | ||||||
Доказательство: | ||||||
Для начала введем несколько обозначений:
В силу обозначений глубину вершины можно записать как количество предков:
Теперь можно выразить математическое ожидание глубины конкретной вершины:
Для подсчёта средней глубины вершин нам нужно сосчитать вероятность того, что вершина является предком вершины , то есть .Введем новое обозначение:
Так как каждая вершина среди может иметь минимальный приоритет, мы немедленно приходим к следующему равенству:Подставив последнее в нашу формулу с математическим ожиданием получим:
| ||||||