Сведение относительно класса функций. Сведение по Карпу. Трудные и полные задачи — различия между версиями
Leugenea (обсуждение | вклад) (Добавил определение) |
Leugenea (обсуждение | вклад) (Добавил пример сведения) |
||
| Строка 1: | Строка 1: | ||
| + | {{В разработке}} | ||
| + | |||
{{Определение | {{Определение | ||
|definition = | |definition = | ||
'''Язык <tex>L_1</tex> сводится по Карпу к языку <tex>L_2</tex> (<tex>L_1 \leq L_2</tex>)''', если существует такая функция <tex>f(x)</tex>, вычислимая за полиномиальное от длины входа время, что <tex>x</tex> принадлежит <tex>L_1</tex> тогда и только тогда, когда <tex>f(x)</tex> принадлежит <tex>L_2</tex>:<br> | '''Язык <tex>L_1</tex> сводится по Карпу к языку <tex>L_2</tex> (<tex>L_1 \leq L_2</tex>)''', если существует такая функция <tex>f(x)</tex>, вычислимая за полиномиальное от длины входа время, что <tex>x</tex> принадлежит <tex>L_1</tex> тогда и только тогда, когда <tex>f(x)</tex> принадлежит <tex>L_2</tex>:<br> | ||
| − | <tex>(L_1 \leq L_2) \Leftrightarrow ( \exists f \in P : x \in L_1 \Leftrightarrow f(x) \in L_2)</tex>. | + | <tex> (L_1 \leq L_2) \Leftrightarrow ( \exists f \in P : x \in L_1 \Leftrightarrow f(x) \in L_2 ) </tex>. |
}} | }} | ||
| + | |||
| + | ==Банальный пример сведения по Карпу== | ||
| + | Зададим следующие языки: | ||
| + | * <tex>IND</tex> — множество пар вида <tex> \langle G, k \rangle </tex>, где <tex>G</tex> — граф, а <tex>k</tex> — число, таких, что в <tex>G</tex> есть [http://ru.wikipedia.org/wiki/%D0%97%D0%B0%D0%B4%D0%B0%D1%87%D0%B0_%D0%BE_%D0%BD%D0%B5%D0%B7%D0%B0%D0%B2%D0%B8%D1%81%D0%B8%D0%BC%D0%BE%D0%BC_%D0%BC%D0%BD%D0%BE%D0%B6%D0%B5%D1%81%D1%82%D0%B2%D0%B5#.D0.9E.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D1.8F независимое множество] размера <tex>k</tex>. | ||
| + | * <tex>CLIQUE</tex> — множество пар вида <tex> \langle G, k \rangle </tex>, где <tex>G</tex> — граф, а <tex>k</tex> — опять же, число, таких, что в <tex>G</tex> есть [http://ru.wikipedia.org/wiki/%D0%9A%D0%BB%D0%B8%D0%BA%D0%B0_(%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%B3%D1%80%D0%B0%D1%84%D0%BE%D0%B2) клика] размера <tex>k</tex>. | ||
| + | Докажем, что <tex>IND \leq CLIQUE</tex>.<br> | ||
| + | Рассмотрим функцию <tex>f( \langle G, k \rangle ) = \langle \overline{G}, k \rangle</tex>, где <tex>\overline{G}</tex> — [http://ru.wikipedia.org/wiki/%D0%94%D0%BE%D0%BF%D0%BE%D0%BB%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5_%D0%B3%D1%80%D0%B0%D1%84%D0%B0 дополнение графа] <tex>G</tex>. <tex>f</tex> вычислима за линейное время от длины входа, если граф представлен в видел матрицы смежности.<br> | ||
| + | * (<tex>x \in L_1 \Rightarrow f(x) \in L_2</tex>) Заметим, что если в <tex>G</tex> было независимое множество размера <tex>k</tex>, то в <tex>\overline{G}</tex> будет клика такого же размера (вершины, которые были в независимом множестве, в <tex>\overline{G}</tex> попарно соединены рёбрами и образуют клику). | ||
| + | * (<tex>x \in L_1 \Leftarrow f(x) \in L_2</tex>) Обратно, если в <tex>\overline{G}</tex> есть клика размера <tex>k</tex>, то в исходном графе было независимое множество размера <tex>k</tex>. | ||
| + | Таким образом, <tex>IND \leq CLIQUE</tex> по определению. | ||
Версия 21:24, 15 апреля 2012
Эта статья находится в разработке!
| Определение: |
| Язык сводится по Карпу к языку (), если существует такая функция , вычислимая за полиномиальное от длины входа время, что принадлежит тогда и только тогда, когда принадлежит : . |
Банальный пример сведения по Карпу
Зададим следующие языки:
- — множество пар вида , где — граф, а — число, таких, что в есть независимое множество размера .
- — множество пар вида , где — граф, а — опять же, число, таких, что в есть клика размера .
Докажем, что .
Рассмотрим функцию , где — дополнение графа . вычислима за линейное время от длины входа, если граф представлен в видел матрицы смежности.
- () Заметим, что если в было независимое множество размера , то в будет клика такого же размера (вершины, которые были в независимом множестве, в попарно соединены рёбрами и образуют клику).
- () Обратно, если в есть клика размера , то в исходном графе было независимое множество размера .
Таким образом, по определению.