Сведение относительно класса функций. Сведение по Карпу. Трудные и полные задачи — различия между версиями
Leugenea (обсуждение | вклад) м |
Leugenea (обсуждение | вклад) (Добавил определение сложного языка) |
||
Строка 26: | Строка 26: | ||
Проверим, что <tex>g(f(x))</tex> вычислима за полиномиальное время от <tex>|x|</tex>. В самом деле, сначала нужно вычислить <tex>f(x)</tex>, на это необходимо не более, чем <tex>p_1(|x|)</tex> времени (<tex>p_1</tex> — полином). Более того, длина входа <tex>g</tex> в <tex>g(f(x))</tex> не превышает того же <tex>p_1(|x|)</tex>, так как за единицу времени может быть выведен максимум один символ. Значит, вычисление <tex>g</tex> на <tex>f(x)</tex> займёт времени не более, чем <tex>p_2(|f(x)|)</tex> (<tex>p_2</tex> — тоже полином), что, по выше сказанному, не превосходит <tex>p_2(p_1(|x|))</tex>. | Проверим, что <tex>g(f(x))</tex> вычислима за полиномиальное время от <tex>|x|</tex>. В самом деле, сначала нужно вычислить <tex>f(x)</tex>, на это необходимо не более, чем <tex>p_1(|x|)</tex> времени (<tex>p_1</tex> — полином). Более того, длина входа <tex>g</tex> в <tex>g(f(x))</tex> не превышает того же <tex>p_1(|x|)</tex>, так как за единицу времени может быть выведен максимум один символ. Значит, вычисление <tex>g</tex> на <tex>f(x)</tex> займёт времени не более, чем <tex>p_2(|f(x)|)</tex> (<tex>p_2</tex> — тоже полином), что, по выше сказанному, не превосходит <tex>p_2(p_1(|x|))</tex>. | ||
В итоге получаем, что итоговое время работы <tex>g(f(x))</tex> не более, чем <tex>p_2(p_1(|x|)) + p_1(|x|)</tex>, что является полиномом от <tex>|x|</tex>. | В итоге получаем, что итоговое время работы <tex>g(f(x))</tex> не более, чем <tex>p_2(p_1(|x|)) + p_1(|x|)</tex>, что является полиномом от <tex>|x|</tex>. | ||
+ | }} | ||
+ | |||
+ | {{Определение | ||
+ | |definition = | ||
+ | <tex>C</tex> — сложностный класс, <tex>\widetilde{D}</tex> — сведение. Язык <tex>L</tex> называется '''<tex>C</tex>-трудным относительно сведения <tex>\widetilde{D}</tex> (<tex>C</tex>-hard)''', если любой язык <tex>M</tex> из <tex>C</tex> сводится по <tex>\widetilde{D}</tex> к <tex>L</tex>:<br> | ||
+ | <tex> (L </tex> — <tex>C</tex>-hard <tex>) \Leftrightarrow ( \forall M \in C \Rightarrow M \leq_{f} L, f \in \widetilde{D} ) </tex>. | ||
}} | }} |
Версия 22:32, 15 апреля 2012
Эта статья находится в разработке!
Определение: |
Язык . | сводится по Карпу к языку ( ), если существует такая функция , вычислимая за полиномиальное от длины входа время, что принадлежит тогда и только тогда, когда принадлежит :
Банальный пример сведения по Карпу
Зададим следующие языки:
- независимое множество размера . — множество пар вида , где — граф, а — число, таких, что в есть
- клика размера . — множество пар вида , где — граф, а — опять же, число, таких, что в есть
Докажем, что
Рассмотрим функцию , где — дополнение графа . вычислима за линейное время от длины входа, если граф представлен в видел матрицы смежности.
- ( ) Заметим, что если в было независимое множество размера , то в будет клика такого же размера (вершины, которые были в независимом множестве, в попарно соединены рёбрами и образуют клику).
- ( ) Обратно, если в есть клика размера , то в исходном графе было независимое множество размера .
Таким образом,
по определению.Замечание. Многие другие примеры сведения по Карпу могут быть найдены в статье про примеры NP-полных языков.
Теорема (о транзитивности): |
Сведение по Карпу транзитивно, то есть: . |
Доказательство: |
Пусть |
Определение: |
— -hard . | — сложностный класс, — сведение. Язык называется -трудным относительно сведения ( -hard), если любой язык из сводится по к :