Класс P — различия между версиями
Tsar (обсуждение | вклад) м (Дописал "\limits" к "\bigcup") |
Tsar (обсуждение | вклад) (→Свойства класса P: Ещё свойства) |
||
Строка 10: | Строка 10: | ||
==Свойства класса <tex>P</tex>== | ==Свойства класса <tex>P</tex>== | ||
− | # Замкнутость | + | # Замкнутость объединения, пересечения, конкатенации, замыкания Клини и дополнения. Если <tex>L_1, L_2 \in P</tex>, то: <tex>L1 \cup L2 \in P</tex>, <tex>L1 \cap L2 \in P</tex>, <tex>L1L2 \in P</tex>, <tex>L1^* \in P</tex> и <tex>\overline{L1} \in P</tex>. |
# Замкнутость относительно [[Сведение по Карпу|сведения по Карпу]]. <tex> L \in P , M \le L \Rightarrow M \in P</tex> | # Замкнутость относительно [[Сведение по Карпу|сведения по Карпу]]. <tex> L \in P , M \le L \Rightarrow M \in P</tex> | ||
# Замкнутость относительно [[Сведение по Карпу|сведения по Куку]]. <tex>L \subset P \Rightarrow P=P^L</tex>. | # Замкнутость относительно [[Сведение по Карпу|сведения по Куку]]. <tex>L \subset P \Rightarrow P=P^L</tex>. |
Версия 20:59, 16 апреля 2012
В теории сложности Класс
— класс языков (задач), разрешимых на детерминированной машине Тьюринга за полиномиальное время, то есть.
Содержание
Определение
Язык L лежит в классе
тогда и только тогда, когда существует такая детерминированная машина Тьюринга , что:- завершает свою работу за полиномиальное время на любых входных данных
- если на вход машине подать слово , то она допустит его
- если на вход машине подать слово , то она не допустит его
Свойства класса
- Замкнутость объединения, пересечения, конкатенации, замыкания Клини и дополнения. Если , то: , , , и .
- Замкнутость относительно сведения по Карпу.
- Замкнутость относительно сведения по Куку. .
Примеры задач и языков из
Класс задач, разрешимых за полиномиальное время достаточно широк, вот несколько его представителей:
- определение связности графов;
- вычисление наибольшего общего делителя.
- проверка простоты числа.[1]
Но, по теореме о временной иерархии существуют и задачи не из .
Задача равенства и
Одним из центральных вопросов теории сложности является вопрос о равенстве классов NP, не разрешенный по сей день.
иЛегко показать, что, по определению,
, так как для любой задачи класса существует соответствующая ДМТ, которая является частным случаем НМТ, а значит задача, по определению, будет входить в класс .