Цепная дробь — различия между версиями
| Строка 16: | Строка 16: | ||
* <tex>[a_0,\cdots, a_n]</tex> {{---}} полином от <tex>n+1</tex> переменной, состоящий из <tex>F_{n+1}</tex> мономов. | * <tex>[a_0,\cdots, a_n]</tex> {{---}} полином от <tex>n+1</tex> переменной, состоящий из <tex>F_{n+1}</tex> мономов. | ||
* <tex>[a_0, a_1, a_2,\cdots, a_n] = a_0[a_1, a_2, a_3,\cdots, a_n] + [a_2, a_3, a_4,\cdots, a_n]</tex>. | * <tex>[a_0, a_1, a_2,\cdots, a_n] = a_0[a_1, a_2, a_3,\cdots, a_n] + [a_2, a_3, a_4,\cdots, a_n]</tex>. | ||
| − | * <tex>[a_0, a_1, a_2,\cdots, a_n] = [a_0, a_1,\cdots, a_{n - 1}]a_n + [a_0, a_1,\cdots, a_{n-2 | + | * <tex>[a_0, a_1, a_2,\cdots, a_n] = [a_0, a_1,\cdots, a_{n - 1}]a_n + [a_0, a_1,\cdots, a_{n-2}]</tex>. |
* Для числителей и знаменателей <tex>n</tex>-ой подходящей дроби верны следующие формулы: | * Для числителей и знаменателей <tex>n</tex>-ой подходящей дроби верны следующие формулы: | ||
** <tex>P_n = P_{n-1}a_n + P_{n-2}</tex> | ** <tex>P_n = P_{n-1}a_n + P_{n-2}</tex> | ||
Версия 13:24, 29 июня 2010
| Определение: |
| Цепная дробь — это выражение вида
|
Числитель и знаменатель цепной дроби можно записать в виде полиномов от переменных . При этом, поскольку числитель каждой дроби является знаменателем следующей, полиномы для числителей и знаменателей имеют одинаковый вид.
Таким образом, цепная дробь представима в виде , где — некоторый полином от
переменной.
Свойства цепных дробей
- — полином от переменной, состоящий из мономов.
- .
- .
- Для числителей и знаменателей -ой подходящей дроби верны следующие формулы:
Доказательства свойств
| Лемма (1): |
. |
| Доказательство: |
|
. Следовательно . |
| Лемма (2): |
— полином от переменной, состоящий из мономов. |
| Доказательство: |
|
База. При : — полином от одной переменной с одним мономом. — два монома. Переход. Пусть верно, что в монома. Докажем, что в монома. В нет мономов, содержащих . Значит в слагаемых. |
| Теорема (1): |
| Доказательство: |
|
База: Пусть верно для всех . Докажем для .
Обобщим последнюю формулу и докажем по индукции. Пусть верно : . Докажем для больших : . Используя условие теоремы для получаем :
Следовательно получаем : . |
| Лемма (3): |
. |
| Доказательство: |
|
Эта формула аналогична формуле из Леммы 1, за исключением того, что "отщепляются" с другого конца. Для получения формулы достаточно скомбинировать результаты Леммы 1 и Теоремы 1. |