Рандомизированное бинарное дерево поиска — различия между версиями
Dima (обсуждение | вклад) (заготовка) |
(нет различий)
|
Версия 23:01, 21 апреля 2012
Рандомизированное бинарное дерево поиска (англ. Randomized binary search tree, RBST) — структура данных, представляющая собой бинарное дерево поиска.
Содержание
Основная идея и связанные определения
Как известно, можно подобрать такую последовательность операций с бинарным деревом поиска в наивной реализации, что его глубина будет пропорциональна количеству ключей, что отрицательно скажется на быстродействии. Поэтому, если поддерживать инвариант "случайности" в дереве, то можно добиться того, что математическое ожидание глубины дерева будет небольшим. Дадим рекурсивное определение случайного бинарного дерева поиска.
Определение: |
Пусть 1) Если пусто, то оно является случайным бинарным деревом поиска. 2) Если непусто (содержит вершин, ), то — случайное бинарное дерево поиска тогда и только тогда, когда его левое и правое поддеревья ( и ) оба являются RBST, а также выполняется соотношение . | — бинарное дерево поиска. Тогда
Из определения следует, что каждый ключ в случайном размера n может оказаться корнем с вероятностью 1/n.
Идея RBST состоит в том, что хранимое дерево постоянно является случайным бинарным деревом поиска. Далее подробно будет описана реализация операций над RBST, которая позволит добиться этой цели. Заметим лишь, что хранение RBST в памяти ничем не отличается от хранения обычного дерева поиска: хранится указатель на корень; в каждой вершине хранятся указатели на её сыновей.
(Похожие идеи используются в декартовом дереве, поэтому во многих русскоязычных ресурсах термин рандомизированное бинарное дерево поиска используется как синонимическое название декартового дерева и декартового дерева по неявному ключу)
Операции
Операции, не связанные с изменением структуры дерева, выполняются как в обычном дереве поиска.
Вставка
Рассмотрим рекурсивный алгоритм вставки ключа
в RBST состоящее из вершин. С вероятностью вставим ключ в корень дерева, использую процедуру insert_at_root. С вероятностью вставим его в правое поддереао, если он больше корня, или в левое поддерево, если меньше. Ниже представлен псевдокод процедуры вставки insert, процедуры insert_at_root, а также процедуры split(k), разбивающей дерево на два поддерева, в одном из которых все ключи строго меньше , а в другом больше, либо равны; приведена достаточно очевидная рекурсивная реализация. (через Node обозначен тип вершины дерева, дерево представляется как указатель на корень)Node insert (x, T) int r = random(0..size(t)) if (r = n) T = insert_at_root(x, T) if (x < rootkey) T = insert(x, T left) else T = insert(x, T right) return T
Заметим, что если дерево пусто, то insert с вероятностью 1 делает
корнем.Node insert_at_root (x, T) ...создать вершины L и R split(x, T, L, R) ...создать новую вершину T T Tkey = x T left = L T left = R return T
split (x, T, L, R) if (T пусто) ...создать пустые L И R else if (x < T Tkey) R = T split (x, T left, L, R left) else L = T split (x, T right, L right, R)
Далее рассмотрим как меняется свойство дерева быть случайным при вставке в него ключей.
Лемма: |
Пусть после операции split от дерева по ключу были получены деревья и . Тогда если было случайным бинарным деревом поиска, содержащим множество ключей , то деревья и — независимые случайные бинарные деревья поиска, содержащие соответственно множества ключей и |
Теорема: |
Если — случайное бинарное дерево поиска, содержащее множество ключей , , тогда процедура insert(x, T) вернёт случайное бинарное дерево поиска , содержащее множество ключей |
Пусть
— множество ключей, — какая-то фиксированная перестановка элементов . Из приведённой выше теоремы следует, что если в изначально пустое дерево добавлять ключи P по порядку, то получим дерево , являющееся RBST.