Изменения

Перейти к: навигация, поиск

Квадратичные вычеты

2168 байт добавлено, 15:44, 29 июня 2010
Новая страница: «{{Определение |definition= Рассмотрим <tex>p\in\mathbb{P}\text{, }p>2</tex>. Если сравнение <tex>x^2\equiv a(mod\text{ }p)</tex> …»
{{Определение
|definition=
Рассмотрим <tex>p\in\mathbb{P}\text{, }p>2</tex>. Если сравнение <tex>x^2\equiv a(mod\text{ }p)</tex> имеет решения, то число <tex>a</tex> называется квадратичным вычетом по модулю <tex>p</tex>. Если решения нет, то <tex>a</tex> называется квадратичным невычетом по модулю <tex>p</tex>.
}}
==Число квадратичных вычетов по простому модулю==
<tex>x=1,2,...,p-1</tex>; <tex>x^2=1^2,2^2,...,(p-1)^2</tex> — Среди этих квадратов будет <tex>\frac{p-1}{2}</tex> различных по модулю <tex>p</tex>, так как квадраты чисел <tex>a</tex>, и <tex>p-a\equiv -a</tex> равны. Следовательно, количество квадратичных вычетов и невычетов по модулю <tex>p</tex> равно <tex>\frac{p-1}{2}</tex>.
==Символ Лежандра, критерий Эйлера==
{{Определение
|definition=
<tex>(\frac{a}{p})</tex> — называется символом Лежандра, если <tex>(\frac{a}{p})=1</tex>, когда <tex>a</tex> - квадратичный вычет по модулю <tex>p</tex>, и <tex>(\frac{a}{p})=-1</tex>, когда <tex>a</tex> — квадратичный невычет по модулю <tex>p</tex>, <tex>p\in\mathbb{P}</tex>.
}}
{{Теорема
|id=euler
|about=Критерий Эйлера
|statement=
Пусть <tex>p>2 \text{; }p \in \mathbb{P}</tex>. Число <tex>a</tex>, взаимнопростое с <tex>p</tex>, является квадратичным вычетом по модулю <tex>p</tex> тогда и только тогда, когда <tex>a^{\frac{p-1}{2}}\equiv 1(mod\text{ }p)</tex>, и является квадратичным невычетом по модулю <tex>p</tex> тогда и только тогда, когда <tex>a^{\frac{p-1}{2}}\equiv -1(mod\text{ }p)</tex>. То есть <tex>(\frac{a}{p})\equiv a^{\frac{p-1}{2}}(mod\text{ }p)</tex>.
}}
63
правки

Навигация