Смежные классы, теорема Лагранжа, нормальные подгруппы, факторгруппы — различия между версиями
(Новая страница: «== Смежные классы == Левым смежным классом группы <math>G</math> по множеству <math>H</math> назовем множ…») |
(нет различий)
|
Версия 19:49, 29 июня 2010
Смежные классы
Левым смежным классом группы
по множеству назовем множество вида Аналогично определяется и правый смежный класс . Для определенности далее рассматриваем только левые смежные классы, все результаты непосредственно переносятся и на правые.Теорема: Левые смежные классы
по подгруппе либо не пересекаются, либо совпадают.Доказательство: Достаточно доказать, что если классы пересекаются, то они совпадают. Рассмотрим два класса
и с общим элементом . Докажем, что . Пусть принадлежит . Известно: . Тогда , поскольку . Значит, . Аналогично .Теорема Лагранжа
Теорема: В конечных группах порядок любой подгруппы делит порядок группы.
Доказательство: Пусть
- конечная группа, а - ее подгруппа. Любой элемент входит в некоторый смежный класс по ( входит в ). Мощность каждого класса равна , т.к. отображение . Таким образом, вся G распадается на непересекающиеся смежные классы одинаковой мощности. Отсюда очевидно, что делится на .Следствие:
. Достаточно рассмотреть циклическую подгруппу : ее порядок равен порядку элемента , но .Следствие:(теорема Ферма) Рассматривая в качестве
группу , получаем при :
Нормальные подгруппы
Подгруппа
группы называется нормальной подгруппой, если для любых выполнено . Т.е.:
Факторгруппа
Рассмотрим группу
и ее нормальную подгруппу . Пусть - множество смежных классов по . Определим в групповую операцию по следующему правилу: произведением двух классов является класс, в который входит произведение представителей этих классов. Проверим корректность этого определения. Пусть . Докажем, что . Достаточно показать, что .