Участник:Muravyov — различия между версиями
Muravyov (обсуждение | вклад) |
Muravyov (обсуждение | вклад) (→Постановка задачи) |
||
Строка 3: | Строка 3: | ||
== Постановка задачи == | == Постановка задачи == | ||
− | На плоскости задан произвольный многоугольник. Требуется найти его триангуляцию. | + | На плоскости задан произвольный многоугольник. Стороны многоугольника не пересекаются. Требуется найти его триангуляцию. |
== Теорема о существовании трингуляции == | == Теорема о существовании трингуляции == |
Версия 14:00, 29 апреля 2012
Триангуляция полигона — декомпозиция многоугольника
на множество треугольников, внутренние области которых попарно не пересекаются и объединение которых в совокупности составляет . В строгом смысле слова, эти треугольники могут иметь вершины только в вершинах исходного многоугольника. Триангуляция не всегда единственна. В этом можно убедиться из примера на рисунке.Содержание
Постановка задачи
На плоскости задан произвольный многоугольник. Стороны многоугольника не пересекаются. Требуется найти его триангуляцию.
Теорема о существовании трингуляции
Простым многоугольником является фигура, ограниченная одной замкнутой ломаной, стороны которой не пересекаются. Таким образом, случаи многоугольников с дырками исключаются.
Теорема (О существовании триангуляции многоугольника): |
У любого простого -вершинного многоугольника всегда существует триангуляция, причём количество треугольников в ней независимо от способа триангуляции. |
Доказательство: |
Доказательство ведётся индуктивно по Докажем, что триангуляция . При теорема тривиальна. Рассмотрим случай при и предположим, что теорема выполняется при всех . Докажем существование диагонали в многоугольнике . Возьмём самую левую вершину многоугольника и две смежных с ней вершины и . Если отрезок принадлежит внутренней области — мы нашли диагональ. В противном случае, во внутренней области треугольника или на самом отрезке содержится одна или несколько вершин . Выберем самую наиболее далеко отстоящую от вершину . Отрезок, соединяющий и не может пересекать сторон , поскольку в противном случае одна из вершин это отрезка будет располагаться дальше от , чем . Это противоречит условию выбора . В итоге получаем, что — диагональ. Любая диагональ делит на два многоугольника и . За и обозначим количество вершин в и соответственно. и , поэтому по предположению индукции у и существует триангуляция, следовательно и у она существует. состоит из треугольников. Рассмотрим произвольную диагональ в триангуляции . делит на два многоугольника и , количество вершин в которых и соответственно. Каждая вершина встречается только в одном из двух многоугольников и , за исключением тех, которые являются концами , поэтому справедливо следующее: . По индукции, любая триангуляция состоит из треугольников, откуда следует, что . состоит из треугольников. |
Способы выполнения триангуляции
Выпуклый многоугольник является тривиальным случаем, триангуляция осуществляется за линейное время добавлением диагоналей от одной вершины ко всем другим вершинам. В том числе есть и другие методы, общее число способов триангуляции выпуклого
-угольника непересекающимися диагоналями является: