Изменения

Перейти к: навигация, поиск

Участник:Muravyov

7 байт добавлено, 18:18, 29 апреля 2012
Теорема о существовании трингуляции
|proof=
Доказательство ведётся индуктивно по <tex>n</tex>. При <tex>n = 3</tex> теорема тривиальна. Рассмотрим случай при <tex>n > 3</tex> и предположим, что теорема выполняется при всех <tex>m < n</tex>. Докажем существование диагонали в многоугольнике <tex>P</tex>. Возьмём самую левую по оси <tex>x</tex> вершину <tex>v</tex> многоугольника <tex>P</tex> и две смежных с ней вершины <tex>u</tex> и <tex>w</tex>. Если отрезок <tex>uw</tex> принадлежит внутренней области <tex>P</tex> — мы нашли диагональ. В противном случае, во внутренней области треугольника <tex>\Delta uwv</tex> или на самом отрезке <tex>uw</tex> содержится одна или несколько вершин <tex>P</tex>. Выберем самую наиболее далеко отстоящую от <tex>uw</tex> вершину <tex>v'</tex>. Отрезок, соединяющий <tex>v</tex> и <tex>v'</tex> не может пересекать сторон <tex>P</tex>, поскольку в противном случае одна из вершин это отрезка будет располагаться дальше от <tex>uw</tex>, чем <tex>v'</tex>. Это противоречит условию выбора <tex>v'</tex>. В итоге получаем, что <tex>v'v</tex> — диагональ.
Любая диагональ делит <tex>P</tex> на два многоугольника <tex>P_1</tex> и <tex>P_2</tex>. За <tex>m_1</tex> и <tex>m_2</tex> обозначим количество вершин в <tex>P_1</tex> и <tex>P_2</tex> соответственно. <tex>m_1 < n</tex> и <tex>m_2 < n</tex>, поэтому по предположению индукции у <tex>P_1</tex> и <tex>P_2</tex> существует триангуляция, следовательно и у <tex>P</tex> она существует.
184
правки

Навигация