Смежные классы, теорема Лагранжа, нормальные подгруппы, факторгруппы — различия между версиями
(→Нормальные подгруппы) |
(→Теорема Лагранжа) |
||
Строка 11: | Строка 11: | ||
'''Теорема:''' В конечных группах порядок любой подгруппы делит порядок группы. | '''Теорема:''' В конечных группах порядок любой подгруппы делит порядок группы. | ||
− | '''Доказательство''': Пусть < | + | '''Доказательство''': Пусть <tex>G</tex> - конечная группа, а <tex>H</tex> - ее подгруппа. Любой элемент <tex>G</tex> входит в некоторый смежный класс по <tex>H</tex> (<tex>a</tex> входит в <tex>aH</tex>). Мощность каждого класса равна <tex>\vert H\vert</tex>, т.к. отображение <tex>x\rightarrow a\cdot x биективно</tex>. Таким образом, вся G распадается на непересекающиеся смежные классы одинаковой мощности. Отсюда очевидно, что <tex>\vert G\vert</tex> делится на <tex>\vert H\vert</tex>. |
− | '''Следствие:''' < | + | '''Следствие:''' <tex>a^{\vert G\vert}=e</tex>. Достаточно рассмотреть циклическую подгруппу <tex>H=\langle a\rangle</tex>: ее порядок равен порядку элемента <tex>a</tex>, но <tex>a^{\vert G\vert}=a^{\frac{\vert G\vert}{\vert H\vert}\vert H\vert}=(a^{\vert H\vert})^{\frac{\vert G\vert}{\vert H\vert}}=e</tex>. |
− | '''Следствие:'''(теорема Ферма) Рассматривая в качестве < | + | '''Следствие:'''(теорема Ферма) Рассматривая в качестве <tex>G</tex> группу <tex>\mathbb{Z}_p</tex>, получаем при <tex>a<p</tex>: |
− | < | + | <tex>a^{\vert \mathbb{Z}_p\vert}=a^{p-1}\equiv 1\mod p \Leftrightarrow a^p\equiv a\mod p</tex> |
== Нормальные подгруппы == | == Нормальные подгруппы == |
Версия 22:22, 29 июня 2010
Смежные классы
Левым смежным классом группы
по множеству назовем множество вида Аналогично определяется и правый смежный класс . Для определенности далее рассматриваем только левые смежные классы, все результаты непосредственно переносятся и на правые.Теорема: Левые смежные классы
по подгруппе либо не пересекаются, либо совпадают.Доказательство: Достаточно доказать, что если классы пересекаются, то они совпадают. Рассмотрим два класса
и с общим элементом . Докажем, что . Пусть принадлежит . Известно: . Тогда , поскольку . Значит, . Аналогично .Теорема Лагранжа
Теорема: В конечных группах порядок любой подгруппы делит порядок группы.
Доказательство: Пусть
- конечная группа, а - ее подгруппа. Любой элемент входит в некоторый смежный класс по ( входит в ). Мощность каждого класса равна , т.к. отображение . Таким образом, вся G распадается на непересекающиеся смежные классы одинаковой мощности. Отсюда очевидно, что делится на .Следствие:
. Достаточно рассмотреть циклическую подгруппу : ее порядок равен порядку элемента , но .Следствие:(теорема Ферма) Рассматривая в качестве
группу , получаем при :
Нормальные подгруппы
Подгруппа
группы называется нормальной подгруппой, если для любых выполнено . Т.е.:
Факторгруппа
Рассмотрим группу
и ее нормальную подгруппу . Пусть - множество смежных классов по . Определим в групповую операцию по следующему правилу: произведением двух классов является класс, в который входит произведение представителей этих классов. Проверим корректность этого определения. Пусть . Докажем, что . Достаточно показать, что .
Таким образом, фактормножество
образует подгруппу, которая называется факторгруппой по . Нейтральным элементом является , обратным к - .