PS-полнота языка верных булевых формул с кванторами (TQBF) — различия между версиями
Kasetkin (обсуждение | вклад) м |
Kasetkin (обсуждение | вклад) |
||
Строка 3: | Строка 3: | ||
<tex>TQBF=\{Q_1 x_1 Q_2 x_2 \cdots Q_n x_n \phi(x_1, x_2, \dots, x_n), Q_i \in \{\forall, \exists\}\}</tex> | <tex>TQBF=\{Q_1 x_1 Q_2 x_2 \cdots Q_n x_n \phi(x_1, x_2, \dots, x_n), Q_i \in \{\forall, \exists\}\}</tex> | ||
}} | }} | ||
− | Чтобы доказать, что <tex>TQBF \in PSPACE-complete</tex> необходимо показать что | + | Чтобы доказать, что <tex>TQBF \in PSPACE-complete</tex> необходимо показать, что эта задача принадлежит <tex>PSPACE</tex> и что она <tex>PSPACE</tex>-трудная. |
{{Лемма | {{Лемма | ||
|about=1 | |about=1 |
Версия 15:09, 30 апреля 2012
Определение: |
расшивровывается как True Quantified Boolean Formula. Это язык верных булевых формул с кванторами. |
Чтобы доказать, что
необходимо показать, что эта задача принадлежит и что она -трудная.Лемма (1): |
Доказательство: |
Чтобы доказать это просто приведём программу, которая требует дополнительной памяти и работает за конечное время.Эта программа требует if return if return дополнительной памяти для хранения стека рекурсивных вызовов. Максимальная глубина стека — |
Лемма (2): |
Доказательство: |
Рассмотрим какой-то язык . Построим функцию Так как , то существует какая-то детерминированная машина Тьюринга , которая его распознаёт за полиномиальное время на ленте полиномиального размера. Пусть — мгновенное описание , тогда выражение обозначает , где — все переменные мгновенного описания . Аналогично выражение обозначает . Теперь рассмотрим два мгновенных описание и . Напишем полиномиальную рекурсивную функцию , которая будет переводить утверждение в TQBF.
Заметим, что размер функции равен размеру с константной добавкой. Теперь мы можем записать функцию которая будет переводить ДМТ и слово на ленте в .
Докажем, что получившаяся булева формула с кванторами удовлетворима тогда и только тогда, когда .Если Если , то стартовое и финишное состояние задано корректно. Также из стартового состояния можно попасть в финишное за полиномиальное время. , то если мы задодим корректное стартовое состояние, то пути до корректного финишного состояния существовать не может. |