184
правки
Изменения
→Разбиение многоугольника на монотонные части
Если же <tex>r = p</tex> (случай '''(b)''' на рисунке), начём опять двигаться по сторонам <tex>P</tex> теперь уже вниз. Как и в предыдущем случае найдётся некоторая точка <tex>r'</tex>, которая будет результатом пересечения <tex>l</tex> и <tex>P</tex>. При этом <tex>r' \neq p</tex>, в противном случае <tex>l</tex> будет пересекать <tex>P</tex> только два раза, то есть <tex>P</tex> будет <tex>y</tex>-монотонным, что противоречит нашему предположению. Аналогично предыдущему случаю, выберем теперь самую низкую точку, которую мы достигли во время движения по сторонам P. Она будет merge вершиной.
}}
===== Идея=====
2) '''''Merge вершина'''''. В отличие от случая со split вершиной заранее вычислить указатель <tex>helper</tex> нельзя, поскольку merge вершина <tex>v_i</tex> должна быть соединена с вершиной, лежащей ниже заметающей прямой <tex>l</tex>. Для этого в <tex>helper</tex> левого относительно <tex>v_i</tex> ребра запишем саму <tex>v_i</tex>. Далее спускаем заметающую прямую вниз к следующей вершине <tex>v_m</tex>, обращаемся к <tex>helper</tex>'у её левого ребра. Проверяем, если там хранится merge вершина, строим диагональ <tex>v_{i}v_{m}</tex>. Последняя проверка осуществляется для любого типа вершины, кроме split, согласно п.1.
===== Структура Структуры =====
В подходе, описанном выше, требуется находить пересечения заметающей прямой и левых ребёр многоугольника. Создадим двоичное дерево поиска <tex>T</tex>, в листьях которого будем хранить рёбра, пересекающие <tex>l</tex>? такие, что внутренняя область многоугольника будет лежать справа от них самих. С каждым таким ребром будем хранить его <tex>helper</tex>. Порядок следования листьев в дереве соответствует порядку следования рёбер в многоугольнике: слева направо. Дерево изменяется в зависимости от текущего состояния заметающей прямой. Создадим приоритетную очередь <tex>Q</tex> из вершин, в которой приоритетом будет <tex>y</tex>-координата вершины. Если две вершины имеют одинаковые <tex>y</tex>-координаты, больший приоритет у левой. Вершины будут добавляться на "остановках" заметающей прямой.
Многоугольник <tex>P</tex> удобно хранить в виде двусвязного спика <tex>D</tex> рёбер и добавленных в процессе диагоналей, так как потом это обеспечит эффективный доступ к каждой из частей, которые нужно будет триангулировать.
===== Алгоритм =====
Псевдокод:
MakeMonotone(P)
==== Триангуляция монотонного многоугольника ====