PS-полнота языка верных булевых формул с кванторами (TQBF) — различия между версиями
Kasetkin (обсуждение | вклад) |
Kasetkin (обсуждение | вклад) |
||
Строка 7: | Строка 7: | ||
|about=1 | |about=1 | ||
|statement=<tex>TQBF \in PSPASE</tex> | |statement=<tex>TQBF \in PSPASE</tex> | ||
− | |proof=Чтобы доказать это, просто приведём программу, | + | |proof=Чтобы доказать это, просто приведём программу <tex>solve</tex>, решающую булеву формулу с кванторами на <tex>O(n)</tex> дополнительной памяти и работающую за конечное время. |
<tex>solve(Q_1 x_1 Q_2 x_2 \cdots Q_n x_n \phi(x_1, x_2, \dots, x_n))</tex> | <tex>solve(Q_1 x_1 Q_2 x_2 \cdots Q_n x_n \phi(x_1, x_2, \dots, x_n))</tex> | ||
'''if''' <tex>Q_1 == \forall</tex> | '''if''' <tex>Q_1 == \forall</tex> | ||
Строка 13: | Строка 13: | ||
'''if''' <tex>Q_1 == \exists</tex> | '''if''' <tex>Q_1 == \exists</tex> | ||
'''return''' <tex>solve(Q_2 x_2 \cdots Q_n x_n \phi(0, x_2, \dots, x_n)) \lor solve(Q_2 x_2 \cdots Q_n x_n \phi(1, x_2, \dots, x_n))</tex> | '''return''' <tex>solve(Q_2 x_2 \cdots Q_n x_n \phi(0, x_2, \dots, x_n)) \lor solve(Q_2 x_2 \cdots Q_n x_n \phi(1, x_2, \dots, x_n))</tex> | ||
− | Эта программа требует <tex>O(n)</tex> дополнительной памяти для хранения стека рекурсивных вызовов. Максимальная глубина стека — <tex>n</tex> | + | Эта программа требует <tex>O(n)</tex> дополнительной памяти для хранения стека рекурсивных вызовов. Максимальная глубина стека — <tex>n</tex>. |
}} | }} | ||
{{Лемма | {{Лемма |
Версия 01:10, 3 мая 2012
Определение: |
расшифровывается как True Quantified Boolean Formula. Это язык верных булевых формул с кванторами. |
Чтобы доказать, что
, необходимо показать, что эта задача принадлежит и что она -трудная.Лемма (1): |
Доказательство: |
Чтобы доказать это, просто приведём программу , решающую булеву формулу с кванторами на дополнительной памяти и работающую за конечное время.Эта программа требует if return if return дополнительной памяти для хранения стека рекурсивных вызовов. Максимальная глубина стека — . |
Лемма (2): |
Доказательство: |
Рассмотрим какой-то язык . Построим функцию . Так как , то существует какая-то детерминированная машина Тьюринга , которая его распознаёт за полиномиальное от размера входа время. Пусть — мгновенное описание , тогда выражение обозначает , где — все переменные мгновенного описания . Аналогично выражение обозначает . Теперь рассмотрим два мгновенных описание и . Напишем рекурсивную функцию , которая будет переводить утверждение в TQBF за полиномиальное относительно длины входа время.
Заметим, что размер функции равен размеру с константной добавкой . Теперь мы можем записать функцию , которая будет переводить ДМТ и слово на ленте в .
Докажем, что получившаяся булева формула с кванторами удовлетворима тогда и только тогда, когда .Если Если , то стартовое и финишное состояние заданы корректно. Также из стартового состояния можно попасть в финишное за полиномиальное время. , то если мы зададим корректное стартовое состояние, то пути до корректного финишного состояния существовать не может. |