Сведение относительно класса функций. Сведение по Карпу. Трудные и полные задачи — различия между версиями
Leugenea (обсуждение | вклад) м |
Leugenea (обсуждение | вклад) (Добавил определение) |
||
Строка 1: | Строка 1: | ||
{{В разработке}} | {{В разработке}} | ||
+ | |||
+ | == Определения == | ||
+ | {{Определение | ||
+ | |definition = | ||
+ | <tex>D</tex> — множество языков, <tex>\widetilde{D}</tex> — '''сведение''' — класс функций, соответствующих языкам из <tex>D</tex>. | ||
+ | '''Язык <tex>L_1</tex> сводится к языку <tex>L_2</tex> относительно <tex>\widetilde{D}</tex> (<tex>L_1 \leq_{\widetilde{D}} L_2</tex>)''', если существует такая функция <tex>f(x)</tex> из <tex>\widetilde{D}</tex>, что <tex>x</tex> принадлежит <tex>L_1</tex> тогда и только тогда, когда <tex>f(x)</tex> принадлежит <tex>L_2</tex>:<br> | ||
+ | <tex> (L_1 \leq_{\widetilde{D}} L_2) \overset{\underset{\mathrm{def}}{}}{\Leftrightarrow} ( \exists f \in \widetilde{D} : x \in L_1 \Leftrightarrow f(x) \in L_2 ) </tex>. | ||
+ | }} | ||
+ | |||
+ | Теперь можно определить сведение по Карпу как частный случай сведения. | ||
{{Определение | {{Определение | ||
Строка 7: | Строка 17: | ||
}} | }} | ||
− | ==Банальный пример сведения по Карпу== | + | == Банальный пример сведения по Карпу == |
Зададим следующие языки: | Зададим следующие языки: | ||
* <tex>IND</tex> — множество пар вида <tex> \langle G, k \rangle </tex>, где <tex>G</tex> — граф, а <tex>k</tex> — число, таких, что в <tex>G</tex> есть [http://ru.wikipedia.org/wiki/%D0%97%D0%B0%D0%B4%D0%B0%D1%87%D0%B0_%D0%BE_%D0%BD%D0%B5%D0%B7%D0%B0%D0%B2%D0%B8%D1%81%D0%B8%D0%BC%D0%BE%D0%BC_%D0%BC%D0%BD%D0%BE%D0%B6%D0%B5%D1%81%D1%82%D0%B2%D0%B5#.D0.9E.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D1.8F независимое множество] размера <tex>k</tex>. | * <tex>IND</tex> — множество пар вида <tex> \langle G, k \rangle </tex>, где <tex>G</tex> — граф, а <tex>k</tex> — число, таких, что в <tex>G</tex> есть [http://ru.wikipedia.org/wiki/%D0%97%D0%B0%D0%B4%D0%B0%D1%87%D0%B0_%D0%BE_%D0%BD%D0%B5%D0%B7%D0%B0%D0%B2%D0%B8%D1%81%D0%B8%D0%BC%D0%BE%D0%BC_%D0%BC%D0%BD%D0%BE%D0%B6%D0%B5%D1%81%D1%82%D0%B2%D0%B5#.D0.9E.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D1.8F независимое множество] размера <tex>k</tex>. |
Версия 20:44, 8 мая 2012
Определения
Определение: |
Язык | — множество языков, — сведение — класс функций, соответствующих языкам из .
Теперь можно определить сведение по Карпу как частный случай сведения.
Определение: |
Язык . | сводится по Карпу к языку ( ), если существует такая функция , вычислимая за полиномиальное от длины входа время, что принадлежит тогда и только тогда, когда принадлежит :
Банальный пример сведения по Карпу
Зададим следующие языки:
- независимое множество размера . — множество пар вида , где — граф, а — число, таких, что в есть
- клика размера . — множество пар вида , где — граф, а — число, такое, что в есть
Докажем, что
Рассмотрим функцию , где — дополнение графа . вычислима за линейное время от длины входа, если граф представлен в видел матрицы смежности.
- ( ) Заметим, что, если в было независимое множество размера , то в будет клика такого же размера (вершины, которые были в независимом множестве, в попарно соединены рёбрами и образуют клику).
- ( ) Обратно, если в есть клика размера , то в исходном графе было независимое множество размера .
Таким образом,
по определению.Замечание. Многие другие примеры сведения по Карпу могут быть найдены в статье про примеры NP-полных языков.
Теорема (о транзитивности): |
Сведение по Карпу транзитивно, то есть: . |
Доказательство: |
Пусть |
Определение: |
— -hard . | — сложностный класс, — сведение. Язык называется -трудным относительно сведения ( -hard), если любой язык из сводится по к :
Определение: |
— сложностный класс, — сведение. Язык называется -полным относительно сведения ( -complete), если является -трудным относительно сведения и сам лежит в . |
Замечание. Часто используется сведение по Карпу, поэтому слова «относительно сведения по Карпу» обычно опускаются. Например, NP-полные языки.
Лемма: |
Доказательство: |
Здесь пруф, ога. |