Префикс-функция — различия между версиями
Vasin (обсуждение | вклад) (→Оптимизация) |
(→Псевдокод) |
||
Строка 28: | Строка 28: | ||
'''for''' i = 1 '''to''' n | '''for''' i = 1 '''to''' n | ||
'''for''' k = 1 '''to''' i - 1 | '''for''' k = 1 '''to''' i - 1 | ||
− | + | '''if''' s[1..k] == s[i - k + 1..i] | |
− | + | <tex>\pi</tex>[i] = k | |
'''return''' <tex>\pi</tex> | '''return''' <tex>\pi</tex> | ||
Версия 12:50, 13 мая 2012
Префикс-функция строки
— функция .Содержание
Алгоритм
Наивный алгоритм вычисляет префикс функцию непосредственно по определению, сравнивая префиксы и суффиксы строк.
Пример
Рассмотрим строку abcabcd, для которой значение префикс-функции равно
.Шаг | Строка | Значение функции |
---|---|---|
a | 0 | |
ab | 0 | |
abc | 0 | |
abca | 1 | |
abcab | 2 | |
abcabc | 3 | |
abcabcd | 0 |
Псевдокод
Prefix_function () = 0 for i = 1 to n for k = 1 to i - 1 if s[1..k] == s[i - k + 1..i] [i] = k return
Время работы
Всего
итераций цикла, на каждой из который происходит сравнение строк за , что дает в итоге .Оптимизация
Внесем несколько важных замечаний:
- превосходит не больше чем на . Действительно, если , тогда , значит в не максимально возможное значение, получили противоречие.
- Избавимся от явных сравнений строк. Пусть мы вычислили и , тогда очевидно . Если же условие ложно, то хотелось бы найти наибольшую длину , для которой верно . Когда мы найдем такое нам достаточно будет сравнить и , при их равенстве будет верно. Будем искать наше пока оно больше нуля, при равенстве нулю , если , иначе нулю. Общая схема алгоритма у нас есть, теперь нужно только научиться искать .
- Для поиска нам стоит использовать равенство , когда ложно, взяв за исходное , это позволит выбирать по убыванию вплоть до нуля, так как очевидно, что для любых .
Последние два пункта наглядно проиллюстрированы на рисунке:
Псевдокод
Prefix_function () = 0 for i = 2 to n k = [i - 1] while k > 0 && s[i] != s[k + 1] k = [k] if s[i] == s[k + 1] k++ [i] = k return
Время работы
В итоге мы получили алгоритм выполняющий
итераций за , что дает нам итоговое .Литература
Кормен Т., Лейзерсон Ч., Ривест Р. Алгоритмы: построение и анализ. — 2-е изд. — М.: Издательский дом «Вильямс», 2007. — С. 1296.