Сортировка подсчетом сложных объектов — различия между версиями
Murtaught (обсуждение | вклад) (Переписал текст, удалил старую картинку, добавил новый раздел и новую картинку.) |
Murtaught (обсуждение | вклад) (Добавлены иллюстрации-примеры) |
||
Строка 18: | Строка 18: | ||
Здесь исходная последовательность из <tex>n</tex> структур хранится в массиве <tex>A</tex>, а отсортированная - в массиве <tex>B</tex> того же размера. Кроме того используется вспомогательный массив <tex>P</tex> с индексами от <tex>0</tex> до <tex>k-1</tex>. | Здесь исходная последовательность из <tex>n</tex> структур хранится в массиве <tex>A</tex>, а отсортированная - в массиве <tex>B</tex> того же размера. Кроме того используется вспомогательный массив <tex>P</tex> с индексами от <tex>0</tex> до <tex>k-1</tex>. | ||
− | * Пройдем по исходному массиву <tex>A</tex> и запишем в <tex>P[i]</tex> количество структур, ключ которых равен <tex>i</tex>. | + | * Пройдем по исходному массиву <tex>A</tex> и запишем в <tex>P[i]</tex> количество структур, ключ которых равен <tex>i</tex>. |
− | * | + | [[Файл:Building_P.png]] |
− | * Теперь массив <tex>P</tex> нам больше не нужен. Превратим его в массив, хранящий в <tex>P[i]</tex> сумму элементов от <tex>0</tex> до <tex>i-1</tex> старого массива <tex>P</tex>. Это | + | |
− | * Произведем саму сортировку. Еще раз пройдем по исходному массиву <tex>A</tex> и для всех <tex>i \in [0, n-1]</tex> будем помещать структуру <tex>A[i]</tex> в массив <tex>B</tex> на место <tex>P[A[i].key] | + | * Мысленно разобьем массив <tex>B</tex> на <tex>k</tex> блоков, длина каждого из которых равна соответственно <tex>P[1]</tex>, <tex>P[2]</tex>, ..., <tex>P[k]</tex>. |
+ | [[Файл:Splitting_B_w_colors.png]] | ||
+ | |||
+ | * Теперь массив <tex>P</tex> нам больше не нужен. Превратим его в массив, хранящий в <tex>P[i]</tex> сумму элементов от <tex>0</tex> до <tex>i-1</tex> старого массива <tex>P</tex>. | ||
+ | [[Файл:P_after_adding.png]] | ||
+ | |||
+ | * Теперь "сдвинем" массив <tex>P</tex> на элемент вперед: в новом массиве <tex>P[0] = 0</tex>, а для <tex>i > 0</tex> <tex>P[i] = P_{old}[i-1]</tex>, где <tex>P_{old}</tex> - старый массив <tex>P</tex>. <br> Это можно сделать за один проход по массиву <tex>P</tex>, причем одновременно с предыдущим шагом. <br> После этого действия в массиве <tex>P</tex> будут хранится индексы массива <tex>B</tex>. <tex>P[key]</tex> указывает на начало блока в <tex>B</tex>, соответствующего ключу <tex>key</tex>. | ||
+ | [[Файл:P_as_array_of_pointers.png]] | ||
+ | |||
+ | * Произведем саму сортировку. Еще раз пройдем по исходному массиву <tex>A</tex> и для всех <tex>i \in [0, n-1]</tex> будем помещать структуру <tex>A[i]</tex> в массив <tex>B</tex> на место <tex>P[A[i].key]</tex>, а затем увеличивать <tex>P[A[i].key]</tex> на <tex>1</tex>. Здесь <tex>A[i].key</tex> {{---}} это ключ структуры, находящейся в массиве <tex>A</tex> на <tex>i</tex>-том месте. | ||
+ | [[Файл:Sorting_A.png]] | ||
Таким образом после завершения алгоритма в <tex>B</tex> будет содержаться исходная последовательность в отсортированном виде (так как блоки расположены по возрастанию соответствующих ключей). | Таким образом после завершения алгоритма в <tex>B</tex> будет содержаться исходная последовательность в отсортированном виде (так как блоки расположены по возрастанию соответствующих ключей). |
Версия 14:26, 17 мая 2012
Иногда бывает очень желательно применить быстрый алгоритм сортировки подсчетом для упорядочивания набора каких-либо "сложных" данных. Под "сложными объектами" здесь подразумеваются структуры, содержащие в себе несколько полей. Одно из них мы выделим и назовем ключом, сортировка будет идти именно по нему (предполагается, что значения, принимаемые ключом - целые числа в диапазоне от до ).
Мы не сможем использовать здесь в точности тот же алгоритм, что и для сортировки подсчетом обычных целых чисел, потому что в наборе могут быть различные структуры, имеющие одинаковые ключи. Существует два способа справиться с этой проблемой — использовать списки для хранения структур в отсортированном массиве или заранее посчитать количество структур с одинаковыми ключами для каждого значения ключа.
Использование списков
Пусть далее исходная последовательность из
структур хранится в массиве , а отсортированная - в массиве с индексами от до .Сделаем из каждой ячейки массива
список, в который будем добавлять структуры с одинаковыми ключами.Этот вариант плох тем, что надо поддерживать сам список, что не является самым простым решением. Еще придется хранить дополнительную информацию в виде ссылок на следующий элемент в списке. И кроме того, такое представление отсортированного массива неудобно в использовании. Избавиться от этих недостатков можно используя другую модификацию алгоритма сортировки подсчетом.
Подсчет числа различных ключей
Здесь исходная последовательность из
структур хранится в массиве , а отсортированная - в массиве того же размера. Кроме того используется вспомогательный массив с индексами от до .- Пройдем по исходному массиву и запишем в количество структур, ключ которых равен .
- Мысленно разобьем массив на блоков, длина каждого из которых равна соответственно , , ..., .
- Теперь массив нам больше не нужен. Превратим его в массив, хранящий в сумму элементов от до старого массива .
- Теперь "сдвинем" массив
Это можно сделать за один проход по массиву , причем одновременно с предыдущим шагом.
После этого действия в массиве будут хранится индексы массива . указывает на начало блока в , соответствующего ключу . на элемент вперед: в новом массиве , а для , где - старый массив .
- Произведем саму сортировку. Еще раз пройдем по исходному массиву и для всех будем помещать структуру в массив на место , а затем увеличивать на . Здесь — это ключ структуры, находящейся в массиве на -том месте.
Таким образом после завершения алгоритма в
будет содержаться исходная последовательность в отсортированном виде (так как блоки расположены по возрастанию соответствующих ключей).Стоит также отметить, что эта сортировка является устойчивой, так как два элемента с одинаковыми ключами будут добавлены в том же порядке, в каком просматривались в исходном массиве
.Источники
- Википедия — Сортировка подсчетом
- Wikipedia — Counting sort
- Кормен Т., Лейзерсон Ч., Ривест Р. Алгоритмы: построение и анализ. — 2-е изд. — М.: Издательский дом «Вильямс», 2007. — С. 224-226.