Ортогональный поиск — различия между версиями
(→Сбалансированное дерево поиска) |
(→Сбалансированное дерево поиска) |
||
| Строка 33: | Строка 33: | ||
Такой же результат можно получить с помощью [[Сжатое многомерное дерево отрезков|сжатого многомерного дерева отрезков]]. | Такой же результат можно получить с помощью [[Сжатое многомерное дерево отрезков|сжатого многомерного дерева отрезков]]. | ||
| + | |||
| + | == Прошитые отсортированные массивы == | ||
== Квадро дерево == | == Квадро дерево == | ||
== Инкрементальное квадро дерево == | == Инкрементальное квадро дерево == | ||
Версия 17:13, 19 мая 2012
Содержание
Простейший случай
Пусть дана прямая с точками на ней и отрезок. Точки даны в отсортированном порядке. Необходимо указать, какие из изначальных точек лежат на этом отрезке.
Данная задача решается с помощью функций из STL - upper_bound и lower_bound.
upper_bound возвращает наименьшее значение больше данного, lower_bound - наибольшее значение меньше данного.
Рассмотрим на примере:
Код реализации:
template<class RauIter, class OutIter, class Scalar> OutIter range_search(RauIter p, RauIter q, OutIter out)
{
return std::copy(lower_bound(p, q, l), upper_bound(p, q, r), out);
}
Сбалансированное дерево поиска
Переходим к двумерному случаю. Пусть дано некоторое множество точек на плоскости. Нам необходимо ответить, какие именно из них лежат в некотором заданном прямоугольнике.
Для этого возьмем любое сбалансированное дерево поиска и наполним его точками из множества. В качестве ключа будет использоваться -координата точки. Теперь модернизируем дерево: в каждой вершине дерева будем хранить отсортированный по -координате массив точек, которые содержатся в соответствующем поддереве. В такой структуре данных поиск точек в заданном прямоугольнике будет выглядеть следующим образом:
- Выберем из дерева поиска те точки, -координата которых лежит в интервале . Сделаем это точно так же, как делается запрос сверху в дереве отрезков. Из аналогии с деревом отрезков следует, что мы ответ мы получим в виде поддеревьев дерева поиска.
- Для каждого из полученных поддеревьев обратимся к массиву содержащихся в нем точек и запустим от него приведенную выше функцию . Все полученные таким образом точки и будут составлять ответ.
Каждая из функций будет работать в худшем случае за , отсюда получаем итоговое время выполнения запроса . Что касается памяти, то в сбалансированном дереве поиска слоев, а каждый слой содержит массивы, содержащие в сумме ровно точек, соответственно вся структура в целом занимает памяти.
Такую структуру данных можно при необходимости обобщить на случай большей размерности. Пусть у нас есть множество точек из -мерного пространства, каждая из которых представляется как координатных чисел: . Тогда, строя дерево поиска по координате , в каждой вершине будем хранить другое дерево поиска с ключом , составленное из точек, лежащих в соответствующем поддереве. В дереве поиска, составленном по предпоследней координате , уже не будет необходимости хранить в каждой вершине целое дерево, поскольку при переходе на последнюю координату дальнейший поиск производиться не будет, поэтому в вершинах будем хранить массивы, так же, как и в двумерном случае. Оценим занимаемую память и время запроса: при добавлении следующей координаты асимптотика обеих величин умножается на . Отсюда, получаем оценку на время запроса и на занимаемую память.
Такой же результат можно получить с помощью сжатого многомерного дерева отрезков.

