Поиск k-ой порядковой статистики за линейное время — различия между версиями
Ruslan (обсуждение | вклад) |
|||
Строка 6: | Строка 6: | ||
'''Алгоритм Блюма-Флойда-Пратта-Ривеста-Тарьяна''' (BFPRT-алгоритм) создан Мануэлем Блюмом (Manuel Blum), Робертом Флойдом (Robert Floyd), Воганом Рональдом Праттом (Vaughan Ronald Pratt), Роном Ривестом (Ron Rivest) и Робертом Тарьяном (Robert Tarjan) в 1973 году. | '''Алгоритм Блюма-Флойда-Пратта-Ривеста-Тарьяна''' (BFPRT-алгоритм) создан Мануэлем Блюмом (Manuel Blum), Робертом Флойдом (Robert Floyd), Воганом Рональдом Праттом (Vaughan Ronald Pratt), Роном Ривестом (Ron Rivest) и Робертом Тарьяном (Robert Tarjan) в 1973 году. | ||
− | == | + | ==Идея алгоритма== |
− | Этот алгоритм почти ни чем не отличается от алгоритма [[Поиск k-ой порядковой статистики|поиска k-ой порядковой статистики]], но имеет важное отличие в том, что время работы алгоритма в наихудшем случае равно <tex>O(n)</tex> | + | Этот алгоритм почти ни чем не отличается от алгоритма [[Поиск k-ой порядковой статистики|поиска k-ой порядковой статистики]], но имеет важное отличие в том, что время работы алгоритма в наихудшем случае равно <tex>O(n)</tex>, что будет доказано ниже. Главная идея алгоритма заключается в том, чтобы ''гарантировать'' хорошее разбиение массива. Алгоритм выбирает такой рассекающий элемент, что количество чисел, которые меньше рассекающего элемента, не менее <tex>\frac{3n}{10}</tex>, где <tex>n</tex> количество элементов в массиве, благодаря этому алгоритм работает за линейной время в любом случае. |
== Описание алгоритма == | == Описание алгоритма == | ||
#Все <tex>n</tex> элементов входного массива разбиваются на группы по пять элементов, в последней группе будет <tex>n</tex> <tex> mod</tex> <tex> 5</tex> элементов. | #Все <tex>n</tex> элементов входного массива разбиваются на группы по пять элементов, в последней группе будет <tex>n</tex> <tex> mod</tex> <tex> 5</tex> элементов. | ||
#Сначала сортируется каждая группа, затем выбираем медиану в каждой из этих групп. | #Сначала сортируется каждая группа, затем выбираем медиану в каждой из этих групп. | ||
− | #Путем рекурсивного вызова шага 1 определяется медиана <tex>x</tex> из множества медиан, найденных на втором шаге. <tex>x</tex> | + | #Путем рекурсивного вызова шага 1 определяется медиана <tex>x</tex> из множества медиан, найденных на втором шаге. <tex>x</tex> — рассекающий элемент, <tex>i</tex> — индекс рассекающего элемента.Если медиан окажется четное количество, то на место рассекающего элемента будут претендовать две медианы, переменной <tex>x</tex> будет присвоено значение большей из этих двух медиан. |
− | #Делим массив относительно рассекающего элемента <tex>x</tex>. Все элементы меньшие <tex>x</tex> будут находиться левее <tex>x</tex> в массиве и будут иметь меньший индекс и наоборот,если элементы больше <tex>x</tex>. | + | #Делим массив относительно рассекающего элемента <tex>x</tex>. Все элементы меньшие <tex>x</tex> будут находиться левее <tex>x</tex> в массиве и будут иметь меньший индекс и наоборот, если элементы больше <tex>x</tex>. |
#Если <tex>i</tex> <tex>=</tex> <tex>k</tex>, то возвращается значение <tex>x</tex>. Иначе вызывается рекурсивно шаг 1, и выполняется поиск <tex>k</tex>-го в порядке возрастания элемента в левой части массива,если <tex>i</tex> <tex><</tex> <tex>k</tex>, или в правой части, если <tex>i</tex> <tex>></tex> <tex>k</tex>. | #Если <tex>i</tex> <tex>=</tex> <tex>k</tex>, то возвращается значение <tex>x</tex>. Иначе вызывается рекурсивно шаг 1, и выполняется поиск <tex>k</tex>-го в порядке возрастания элемента в левой части массива,если <tex>i</tex> <tex><</tex> <tex>k</tex>, или в правой части, если <tex>i</tex> <tex>></tex> <tex>k</tex>. | ||
===Псевдокод=== | ===Псевдокод=== | ||
Строка 26: | Строка 26: | ||
for (i = 1 to n/5) do | for (i = 1 to n/5) do | ||
x[i] = select(S[i],3) //найдем медианы S[i]; | x[i] = select(S[i],3) //найдем медианы S[i]; | ||
− | M = select({x[i]}, n/10) // M | + | M = select({x[i]}, n/10) // M — рассекающий элемент; |
partition L into L1<M, L2=M, L3>M // разобьем L на подмножества L1, где все элементы меньше M; | partition L into L1<M, L2=M, L3>M // разобьем L на подмножества L1, где все элементы меньше M; | ||
if (k <= length(L1)) // L3, где все элементы больше M и L2 равное M; | if (k <= length(L1)) // L3, где все элементы больше M и L2 равное M; | ||
Строка 50: | Строка 50: | ||
== Анализ времени работы алгоритма == | == Анализ времени работы алгоритма == | ||
− | Пусть <tex>T(n)</tex> | + | Пусть <tex>T(n)</tex> — время работы алгоритма для <tex>n</tex> элементов, тогда оно не больше, чем сумма: |
# времени работы на сортировку групп и разбиение по рассекающему элементу, то есть <tex>Cn</tex>; | # времени работы на сортировку групп и разбиение по рассекающему элементу, то есть <tex>Cn</tex>; | ||
# времени работы для поиска медианы медиан, то есть <tex>T(\frac{n}{5})</tex>; | # времени работы для поиска медианы медиан, то есть <tex>T(\frac{n}{5})</tex>; | ||
− | # времени работы для поиска <tex>k</tex>-го элемента в одной из двух частей массива, то есть <tex>T(s)</tex>, где <tex>s</tex> | + | # времени работы для поиска <tex>k</tex>-го элемента в одной из двух частей массива, то есть <tex>T(s)</tex>, где <tex>s</tex> — количество элементов в этой части. Но <tex>s</tex> не превосходит <tex>\frac{7n}{10}</tex>, так как чисел, меньших рассекающего элемента, не менее <tex>\frac{3n}{10}</tex> — это <tex>\frac{n}{10}</tex> медиан, меньших медианы медиан, плюс не менее <tex>\frac{2n}{10}</tex> элементов, меньших этих медиан. С другой стороны, чисел, больших рассекающего элемента, так же не менее <tex>\frac{3n}{10}</tex>, следовательно <tex> s \le \frac{7n}{10}</tex>, то есть в худшем случае <tex> s = \frac{7n}{10}</tex>. |
Тогда получаем, что | Тогда получаем, что |
Версия 20:13, 22 мая 2012
Определение: |
-ой порядковой статистикой набора элементов линейно упорядоченного множества называется такой его элемент, который является -ым элементом набора в порядке сортировки |
Содержание
Историческая справка
Алгоритм Блюма-Флойда-Пратта-Ривеста-Тарьяна (BFPRT-алгоритм) создан Мануэлем Блюмом (Manuel Blum), Робертом Флойдом (Robert Floyd), Воганом Рональдом Праттом (Vaughan Ronald Pratt), Роном Ривестом (Ron Rivest) и Робертом Тарьяном (Robert Tarjan) в 1973 году.
Идея алгоритма
Этот алгоритм почти ни чем не отличается от алгоритма поиска k-ой порядковой статистики, но имеет важное отличие в том, что время работы алгоритма в наихудшем случае равно , что будет доказано ниже. Главная идея алгоритма заключается в том, чтобы гарантировать хорошее разбиение массива. Алгоритм выбирает такой рассекающий элемент, что количество чисел, которые меньше рассекающего элемента, не менее , где количество элементов в массиве, благодаря этому алгоритм работает за линейной время в любом случае.
Описание алгоритма
- Все элементов входного массива разбиваются на группы по пять элементов, в последней группе будет элементов.
- Сначала сортируется каждая группа, затем выбираем медиану в каждой из этих групп.
- Путем рекурсивного вызова шага 1 определяется медиана из множества медиан, найденных на втором шаге. — рассекающий элемент, — индекс рассекающего элемента.Если медиан окажется четное количество, то на место рассекающего элемента будут претендовать две медианы, переменной будет присвоено значение большей из этих двух медиан.
- Делим массив относительно рассекающего элемента . Все элементы меньшие будут находиться левее в массиве и будут иметь меньший индекс и наоборот, если элементы больше .
- Если , то возвращается значение . Иначе вызывается рекурсивно шаг 1, и выполняется поиск -го в порядке возрастания элемента в левой части массива,если , или в правой части, если .
Псевдокод
select(L,k) { if (length(L) <= 10) { sort L return the element in the kth position // вернем элемент, находящийся на k-ой позиции; } partition L into subsets S[i] of five elements each // разобьем L на подмножества S[i] размером 5 по 5 элементов; (there will be n/5 subsets total). for (i = 1 to n/5) do x[i] = select(S[i],3) //найдем медианы S[i]; M = select({x[i]}, n/10) // M — рассекающий элемент; partition L into L1<M, L2=M, L3>M // разобьем L на подмножества L1, где все элементы меньше M; if (k <= length(L1)) // L3, где все элементы больше M и L2 равное M; return select(L1,k) else if (k > length(L1)+length(L2)) return select(L3,k-length(L1)-length(L2)) else return M // элемент на k-ой позиции в исходном массиве; }
Пример
На вход подается массив, разобьем элементы на группы по 5 элементов. Отсортируем элементы каждой группы и выберем медианы. Вызовемся рекурсивно от медиан.
Разобьем на группы по 5 медианы. Отсортируем элементы каждой группы и выберем медианы
Выберем медианы медиан. В итоге мы получили один элемент равный
. Это и есть рассекающий элемент.
Анализ времени работы алгоритма
Пусть
— время работы алгоритма для элементов, тогда оно не больше, чем сумма:- времени работы на сортировку групп и разбиение по рассекающему элементу, то есть ;
- времени работы для поиска медианы медиан, то есть ;
- времени работы для поиска -го элемента в одной из двух частей массива, то есть , где — количество элементов в этой части. Но не превосходит , так как чисел, меньших рассекающего элемента, не менее — это медиан, меньших медианы медиан, плюс не менее элементов, меньших этих медиан. С другой стороны, чисел, больших рассекающего элемента, так же не менее , следовательно , то есть в худшем случае .
Тогда получаем, что
Покажем, что для всех
выполняется неравенство .Докажем по индукции:
- Очевидно, что для малых выполняется неравенство
- Тогда, по предположению индукции, и , тогда
Так как
, то время работы алгоритмаЛитература
- Кормен, Т., Лейзерсон, Ч., Ривест, Р., Штайн, К. Алгоритмы: построение и анализ