Лемма о соотношении coNP и IP — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Новая страница: «{{Определение |definition= <tex>\#SAT=\{\langle \varphi, k \rangle | \varphi</tex> имеет ровно <tex>k</tex> удовлетворяющих н...»)
(нет различий)

Версия 12:32, 1 июня 2012

Определение:
[math]\#SAT=\{\langle \varphi, k \rangle | \varphi[/math] имеет ровно [math]k[/math] удовлетворяющих наборов [math]\}[/math].


Лемма (1):
[math]\#SAT \in \mathrm{IP}[/math].
Лемма (2):
[math]\mathrm{coNP} \subset \mathrm{IP}[/math].
Доказательство:
[math]\triangleright[/math]

Сведём язык [math]TAUT[/math] к языку [math]\#SAT[/math] следующим образом: [math]\phi \mapsto \langle \phi, 2^k \rangle [/math], где [math]k[/math] — количество различных переменных в формуле [math]\phi[/math].

Очевидно, что [math]\phi \in TAUT \iff \langle \phi, 2^k \rangle \in \#SAT[/math].

По лемме (1) [math]\#SAT \in \mathrm{IP}[/math]. Тогда [math]TAUT \in \mathrm{IP}[/math]. Так как [math]TAUT \in \mathrm{coNPC}[/math], то [math]\mathrm{coNP} \subset \mathrm{IP}[/math].
[math]\triangleleft[/math]