Сложностные классы. Вычисления с оракулом — различия между версиями
Строка 2: | Строка 2: | ||
Ответ на этот вопрос был дан в работах Кобхэма (Alan Cobham, 1964) и Эдмондса (Jack Edmonds, 1965), где были введены сложностные классы задач. К ним относятся классы [[Класс P|P]], [[Недетерминированные вычисления. Классы NP и Σ₁|NP]] и т.д. | Ответ на этот вопрос был дан в работах Кобхэма (Alan Cobham, 1964) и Эдмондса (Jack Edmonds, 1965), где были введены сложностные классы задач. К ним относятся классы [[Класс P|P]], [[Недетерминированные вычисления. Классы NP и Σ₁|NP]] и т.д. | ||
− | |||
− | |||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
Строка 10: | Строка 8: | ||
<tex>TS(p,x)</tex> — ограничение и по времени и по памяти. | <tex>TS(p,x)</tex> — ограничение и по времени и по памяти. | ||
}} | }} | ||
+ | |||
+ | Введём понятия <tex>DTIME</tex> и <tex>DSPACE</tex>, аналогичным образом определяются классы <tex>NSPACE</tex> и <tex>NTIME</tex> (префикс <tex>D</tex> соответствует детерминизму, а <tex>N</tex> — недетерминизму). | ||
+ | |||
{{Определение | {{Определение | ||
|definition= | |definition= |
Версия 17:54, 1 июня 2012
В начале 1960-х годов, в связи с началом широкого использования вычислительной техники для решения практических задач, возник вопрос о границах практической применимости данного алгоритма решения задачи в смысле ограничений на её размерность. Какие задачи могут быть решены на ЭВМ за реальное время?
Ответ на этот вопрос был дан в работах Кобхэма (Alan Cobham, 1964) и Эдмондса (Jack Edmonds, 1965), где были введены сложностные классы задач. К ним относятся классы P, NP и т.д.
Определение: |
— ограничение по памяти. — ограничение и по времени и по памяти. | — ограничение по времени.
Введём понятия и , аналогичным образом определяются классы и (префикс соответствует детерминизму, а — недетерминизму).
Определение: |
программа и для , такого что (здесь — длина входа), . |
Определение: |
программа и для , такого что (здесь — длина входа), . |
Через понятия классов , , и будет дано определение многим сложностным классам, в том числе классов P и NP.
Вычисление с оракулом
Определение: |
Оракул — программа | , вычисляющая за времени, верно ли, что .
Сложностный класс задач, решаемых алгоритмом из класса
с оракулом для языка , обозначают . Так же называют сложностным классом с доступом к оракулу . Если — множество языков, то , где — язык из .