PS-полнота языка верных булевых формул с кванторами (TQBF) — различия между версиями
м |
м |
||
Строка 21: | Строка 21: | ||
Построим функцию <tex>f \colon \forall x \in L \Leftrightarrow f(x) \in TQBF</tex>. | Построим функцию <tex>f \colon \forall x \in L \Leftrightarrow f(x) \in TQBF</tex>. | ||
Так как <tex>L \in \mathrm{PS}</tex>, то существует какая-то детерминированная машина Тьюринга <tex>M</tex>, которая его распознаёт за полиномиальное от размера входа время. | Так как <tex>L \in \mathrm{PS}</tex>, то существует какая-то детерминированная машина Тьюринга <tex>M</tex>, которая его распознаёт за полиномиальное от размера входа время. | ||
− | Пусть <tex>I</tex> — мгновенное описание <tex>M</tex>, тогда выражение <tex>\exists I</tex> обозначает <tex> (\exists x_1) (\exists x_2)\cdots(\exists x_n)</tex>, где <tex>\{x_i\}</tex> — все переменные мгновенного описания <tex>M</tex>. Аналогично выражение <tex> \forall I</tex> обозначает <tex> (\forall x_1) (\forall x_2)\dots(\forall x_n)</tex>. Теперь рассмотрим два мгновенных | + | Пусть <tex>I</tex> — мгновенное описание <tex>M</tex>, тогда выражение <tex>\exists I</tex> обозначает <tex> (\exists x_1) (\exists x_2)\cdots(\exists x_n)</tex>, где <tex>\{x_i\}</tex> — все переменные мгновенного описания <tex>M</tex>. Аналогично выражение <tex> \forall I</tex> обозначает <tex> (\forall x_1) (\forall x_2)\dots(\forall x_n)</tex>. Теперь рассмотрим два мгновенных описания <tex>M: A</tex> и <tex>B</tex>. Напишем рекурсивную функцию <tex>\phi(A, B, t)</tex>, которая будет переводить утверждение <tex>A\vdash^tB</tex> в <tex>TQBF</tex> за полиномиальное относительно длины входа время. |
<tex>\phi(A, B, t) = \\ (\exists R) (\forall U) (\forall V) \ \{\phi(U, V, t/2) \lor [\neg(A = U \land R = V) \land \neg(R = U \land B = V)]\}</tex> | <tex>\phi(A, B, t) = \\ (\exists R) (\forall U) (\forall V) \ \{\phi(U, V, t/2) \lor [\neg(A = U \land R = V) \land \neg(R = U \land B = V)]\}</tex> |
Версия 12:30, 2 июня 2012
Определение: |
расшифровывается как True Quantified Boolean Formula. Это язык верных булевых формул с кванторами. |
Чтобы доказать, что
, необходимо показать, что и .Лемма (1): |
Доказательство: |
Чтобы доказать это, просто приведём программу , решающую булеву формулу с кванторами на дополнительной памяти и работающую за конечное время.Эта программа требует if return if return дополнительной памяти для хранения стека рекурсивных вызовов. Максимальная глубина стека — . |
Лемма (2): |
. |
Доказательство: |
Рассмотрим язык . Построим функцию . Так как , то существует какая-то детерминированная машина Тьюринга , которая его распознаёт за полиномиальное от размера входа время. Пусть — мгновенное описание , тогда выражение обозначает , где — все переменные мгновенного описания . Аналогично выражение обозначает . Теперь рассмотрим два мгновенных описания и . Напишем рекурсивную функцию , которая будет переводить утверждение в за полиномиальное относительно длины входа время.
Заметим, что размер функции равен размеру с константной добавкой . Теперь мы можем записать функцию , которая будет переводить ДМТ и слово на ленте в .
Докажем, что получившаяся булева формула с кванторами удовлетворима тогда и только тогда, когда .Если , то стартовое и финишное состояние заданы корректно. Также из стартового состояния можно попасть в финишное за полиномиальное время.Если Таким образом, , то если мы зададим корректное стартовое состояние, то пути до корректного финишного состояния существовать не может. . |