Теорема Махэни — различия между версиями
Kirelagin (обсуждение | вклад) (\bigm|) |
Kirelagin (обсуждение | вклад) (Да хватит уже удовлетворять формулы!) |
||
Строка 32: | Строка 32: | ||
Так как функция <tex>f</tex> работает полиномиальное время, и <tex>|\phi|=|y|</tex> (<tex>|y|</tex> — длина вектора <tex>y</tex>), то <tex>f(\langle\phi,y\rangle) \le q(|\phi|)</tex>, где <tex>q</tex> — полином. | Так как функция <tex>f</tex> работает полиномиальное время, и <tex>|\phi|=|y|</tex> (<tex>|y|</tex> — длина вектора <tex>y</tex>), то <tex>f(\langle\phi,y\rangle) \le q(|\phi|)</tex>, где <tex>q</tex> — полином. | ||
− | <tex>S\in \mathrm{SPARSE}</tex> | + | <tex>S\in \mathrm{SPARSE}</tex>, следовательно <tex>\forall n \; |S \cap \Sigma^n|\le p(n)</tex>, где <tex>p</tex> — некоторый полином. |
Тогда <tex>|\{x\in S \bigm| |x| \le q(|\phi|)\}| \le \sum\limits_{i=1}^{q(|\phi|)} p(i) = r(|\phi|)</tex>, где <tex>r</tex> — также полином. | Тогда <tex>|\{x\in S \bigm| |x| \le q(|\phi|)\}| \le \sum\limits_{i=1}^{q(|\phi|)} p(i) = r(|\phi|)</tex>, где <tex>r</tex> — также полином. | ||
− | Опишем алгоритм для нахождения лексикографически минимальной строки <tex>x</tex>, удовлетворяющей | + | Опишем алгоритм для нахождения лексикографически минимальной строки <tex>x</tex>, удовлетворяющей формуле <tex>\phi</tex>. |
Пусть <tex>n=|\phi|, r=r(|\phi|)</tex>. Изначально область поиска для <tex>x</tex> — все строки длины <tex>n</tex>. Опишем одну итерацию поиска. | Пусть <tex>n=|\phi|, r=r(|\phi|)</tex>. Изначально область поиска для <tex>x</tex> — все строки длины <tex>n</tex>. Опишем одну итерацию поиска. | ||
Строка 46: | Строка 46: | ||
Рассмотрим два случая: | Рассмотрим два случая: | ||
− | # <tex>\exists i \ne j | + | # <tex>\exists i \ne j : z_i=z_j</tex>. Строки <tex>z_i</tex> и <tex>z_j</tex> либо обе лежат в <tex>S</tex>, либо обе не лежат в <tex>S</tex>. Тогда по вышеуказанной причине <tex>x\notin (w_i, w_j]</tex>. Значит мы можем исключить этот полуинтервал из рассматриваемого множества. Таким образом, мы удаляем не менее <tex>\frac 1{r+1}</tex> часть множества подстановок. |
− | # <tex>z_i \ne z_j \, \forall i \ne j</tex>. Как было показано выше, если <tex>z_0</tex> или <tex>z_1</tex> | + | # <tex>z_i \ne z_j \, \forall i \ne j</tex>. Как было показано выше, если <tex>z_0</tex> или <tex>z_1</tex> лежит в <tex>S</tex>, то все последующие <tex>z_i</tex> тоже лежат в <tex>S</tex>, но тогда <tex>S</tex> содержит <tex>r+1</tex> строку длины не более, чем <tex>q(|\phi|)</tex>, что противоречит условию <tex>|\{x\in S\, |\, |x| \le q(|\phi|)\}| \le r(|\phi|)</tex>. Следовательно, <tex>x\notin[w_0,w_1]</tex>, то есть его можно убрать из рассмотрения. |
В обоих случаях мы сузили область поиска как минимум на <tex>\frac 1{r+1}</tex> её размера. | В обоих случаях мы сузили область поиска как минимум на <tex>\frac 1{r+1}</tex> её размера. | ||
− | Будем повторять эту процедуру до тех пор, пока не останется не более <tex>r+1</tex> строки, которые мы можем проверить за полиномиальное время. Если какая-то из них удовлетворила | + | Будем повторять эту процедуру до тех пор, пока не останется не более <tex>r+1</tex> строки, которые мы можем проверить за полиномиальное время. Если какая-то из них удовлетворила формуле <tex>\phi</tex>, то <tex>x=min(w_i), w_i</tex> удовлетворяет <tex>\phi</tex>. Иначе, <tex>x</tex> не существует. |
Оценим время работы нашего алгоритма. После <tex>k</tex> итераций у нас останется не более <tex>2^n(1-\frac1{r+1})^k</tex> строк. Оценим <tex>k</tex>. | Оценим время работы нашего алгоритма. После <tex>k</tex> итераций у нас останется не более <tex>2^n(1-\frac1{r+1})^k</tex> строк. Оценим <tex>k</tex>. | ||
Строка 57: | Строка 57: | ||
<tex>2^n(1-\frac1{r+1})^k \simeq 1</tex>. Отсюда <tex>k=O(rn)</tex> (это можно получить, выразив <tex>k</tex> через <tex>n</tex> и <tex>r</tex> и воспользовавшись [http://ru.wikipedia.org/wiki/Ряд_Тейлора#.D0.A0.D1.8F.D0.B4.D1.8B_.D0.9C.D0.B0.D0.BA.D0.BB.D0.BE.D1.80.D0.B5.D0.BD.D0.B0_.D0.BD.D0.B5.D0.BA.D0.BE.D1.82.D0.BE.D1.80.D1.8B.D1.85_.D1.84.D1.83.D0.BD.D0.BA.D1.86.D0.B8.D0.B9 формулой Тейлора] для логарифма). | <tex>2^n(1-\frac1{r+1})^k \simeq 1</tex>. Отсюда <tex>k=O(rn)</tex> (это можно получить, выразив <tex>k</tex> через <tex>n</tex> и <tex>r</tex> и воспользовавшись [http://ru.wikipedia.org/wiki/Ряд_Тейлора#.D0.A0.D1.8F.D0.B4.D1.8B_.D0.9C.D0.B0.D0.BA.D0.BB.D0.BE.D1.80.D0.B5.D0.BD.D0.B0_.D0.BD.D0.B5.D0.BA.D0.BE.D1.82.D0.BE.D1.80.D1.8B.D1.85_.D1.84.D1.83.D0.BD.D0.BA.D1.86.D0.B8.D0.B9 формулой Тейлора] для логарифма). | ||
− | Таким образом, мы можем разрешить язык <tex>\mathrm{LSAT}</tex> за полиномиальное время, найдя лексикографически минимальную строку, удовлетворяющую | + | Таким образом, мы можем разрешить язык <tex>\mathrm{LSAT}</tex> за полиномиальное время, найдя лексикографически минимальную строку, удовлетворяющую формуле, и сравнив её с нашим аргументом. Так как <tex>\mathrm{LSAT}\in \mathrm{NPC}</tex>, то мы можем решить любую задачу из <tex>\mathrm{NP}</tex> за полиномиальное время, а значит <tex>\mathrm{P}=\mathrm{NP}</tex>. |
}} | }} |
Версия 11:52, 3 июня 2012
Определение: |
. |
Лемма (1): |
. |
Доказательство: |
|
Лемма (2): |
. Тогда . |
Доказательство: |
. Тогда . Так как , то , следовательно . |
Теорема (Махэни): |
. |
Доказательство: |
Пусть .Так как , и , то существует полиномиальная функция сведения такая, что .Так как функция работает полиномиальное время, и ( — длина вектора ), то , где — полином. , следовательно , где — некоторый полином.Тогда , где — также полином.Опишем алгоритм для нахождения лексикографически минимальной строки , удовлетворяющей формуле .Пусть . Изначально область поиска для — все строки длины . Опишем одну итерацию поиска.Разобьём текущее множество строк на подотрезок примерно равной длины. Обозначим концы полученных подотрезков . Пусть теперь .Из леммы (2) мы знаем, что, начиная с некоторого , все пары . Тогда по сведению для всех .Рассмотрим два случая:
В обоих случаях мы сузили область поиска как минимум на её размера.Будем повторять эту процедуру до тех пор, пока не останется не более строки, которые мы можем проверить за полиномиальное время. Если какая-то из них удовлетворила формуле , то удовлетворяет . Иначе, не существует.Оценим время работы нашего алгоритма. После итераций у нас останется не более строк. Оценим .формулой Тейлора для логарифма). Таким образом, мы можем разрешить язык . Отсюда (это можно получить, выразив через и и воспользовавшись за полиномиальное время, найдя лексикографически минимальную строку, удовлетворяющую формуле, и сравнив её с нашим аргументом. Так как , то мы можем решить любую задачу из за полиномиальное время, а значит . |