PS-полнота языка верных булевых формул с кванторами (TQBF) — различия между версиями
м |
м |
||
Строка 1: | Строка 1: | ||
{{Определение | {{Определение | ||
|definition=<tex>TQBF</tex> расшифровывается как True Quantified Boolean Formula. Это язык верных булевых формул с кванторами. | |definition=<tex>TQBF</tex> расшифровывается как True Quantified Boolean Formula. Это язык верных булевых формул с кванторами. | ||
− | <tex>TQBF=\{Q_1 x_1 Q_2 x_2 \cdots Q_n x_n \phi(x_1, x_2, \dots, x_n), Q_i \in \{\forall, \exists\}\}</tex> | + | <tex>TQBF=\{Q_1 x_1 Q_2 x_2 \cdots Q_n x_n \phi(x_1, x_2, \dots, x_n), Q_i \in \{\forall, \exists\}\}</tex>. |
}} | }} | ||
Чтобы доказать, что <tex>TQBF \in \mathrm{PSC}</tex>, необходимо показать, что <tex>TQBF \in \mathrm{PSH}</tex> и <tex>TQBF \in \mathrm{PS}</tex>. | Чтобы доказать, что <tex>TQBF \in \mathrm{PSC}</tex>, необходимо показать, что <tex>TQBF \in \mathrm{PSH}</tex> и <tex>TQBF \in \mathrm{PS}</tex>. | ||
{{Лемма | {{Лемма | ||
|about=1 | |about=1 | ||
− | |statement=<tex>TQBF \in \mathrm{PS}</tex> | + | |statement=<tex>TQBF \in \mathrm{PS}</tex>. |
|proof=Чтобы доказать это, просто приведём программу <tex>solve</tex>, решающую булеву формулу с кванторами на <tex>O(n)</tex> дополнительной памяти и работающую за конечное время. | |proof=Чтобы доказать это, просто приведём программу <tex>solve</tex>, решающую булеву формулу с кванторами на <tex>O(n)</tex> дополнительной памяти и работающую за конечное время. | ||
<tex>solve(Q_1 x_1 Q_2 x_2 \cdots Q_n x_n \phi(x_1, x_2, \dots, x_n))</tex> | <tex>solve(Q_1 x_1 Q_2 x_2 \cdots Q_n x_n \phi(x_1, x_2, \dots, x_n))</tex> |
Версия 13:15, 3 июня 2012
Определение: |
расшифровывается как True Quantified Boolean Formula. Это язык верных булевых формул с кванторами. . |
Чтобы доказать, что
, необходимо показать, что и .Лемма (1): |
. |
Доказательство: |
Чтобы доказать это, просто приведём программу , решающую булеву формулу с кванторами на дополнительной памяти и работающую за конечное время.Эта программа требует if return if return дополнительной памяти для хранения стека рекурсивных вызовов. Максимальная глубина стека — . |
Лемма (2): |
. |
Доказательство: |
Рассмотрим язык . Построим функцию . Так как , то существует какая-то детерминированная машина Тьюринга , которая его распознаёт за полиномиальное от размера входа время. Пусть — мгновенное описание , тогда выражение обозначает , где — все переменные мгновенного описания . Аналогично выражение обозначает . Теперь рассмотрим два мгновенных описания и . Напишем рекурсивную функцию , которая будет переводить утверждение в за полиномиальное относительно длины входа время.
Заметим, что размер функции равен размеру с константной добавкой . Теперь мы можем записать функцию , которая будет переводить ДМТ и слово на ленте в .
Докажем, что получившаяся булева формула с кванторами удовлетворима тогда и только тогда, когда .Если , то стартовое и финишное состояние заданы корректно. Также из стартового состояния можно попасть в финишное за полиномиальное время.Если Таким образом, , то если мы зададим корректное стартовое состояние, то пути до корректного финишного состояния существовать не может. . |