Материал из Викиконспекты
|
|
Строка 1: |
Строка 1: |
| | | |
− | == PCP-система == | + | == Определения == |
| | | |
| {{Определение | | {{Определение |
Строка 27: |
Строка 27: |
| | | |
| | | |
− | == Свойства PCP-систем == | + | == Свойства == |
| | | |
| {{Теорема | | {{Теорема |
Строка 48: |
Строка 48: |
| | | |
| | | |
− | == Пример PCP-класса == | + | == Пример == |
Версия 15:42, 3 июня 2012
Определения
Определение: |
[math]\mathrm{PCP}[/math]-системой(системой вероятностно проверяемых доказательств) с полнотой [math]c(n)[/math] и обоснованностью [math]s(n)[/math] над алфавитом [math]\Sigma[/math] для языка [math]L[/math], где [math]0 \le s(n) \le c(n) \le 1[/math], называется пара [math]V[/math] — вероятностная машина Тьюринга имеющая доступ к цепочке [math]\pi \in \Sigma^{*} : |\pi| \le 2^{poly(|input|)}[/math] — доказательству, удовлетворяющая следующим свойствам:
- Полнота: если [math]x \in L[/math], то [math]P(V^{\pi}(x)=1) \ge c(n)[/math] для некоторой [math]\pi[/math].
- Обоснованность: если [math]x \notin L[/math], то [math]P(V^{\pi}(x)=1) \le s(n)[/math] для любой [math]\pi[/math].
|
Определение: |
Randomness complexity(вероятностной сложностью) [math]r(n)[/math] верификатора [math]V[/math] называется число случайных битов, которое он использует за всё время работы со входом длины [math]n[/math]. |
Определение: |
Query complexity(запросовой сложностью) [math]q(n)[/math] верификатора [math]V[/math] называется число запросов битов из [math]\pi[/math], которое он отсылает за всё время работы со входом длины [math]n[/math]. |
Определение: |
Верификатор [math]V[/math] называется non-adaptive(неадаптивным), если при отправке запроса не использует ответы на предыдущие. Иными словами, его работа не изменится, если все свои запросы он отправит одновременно. |
Определение: |
Сложностный класс [math]\mathrm{PCP}_{c(n), s(n)}[r(n), q(n)][/math] является объединением языков всех [math]L[/math], для которых существует [math]\mathrm{PCP}[/math]-система над бинарным алфавитом с полнотой [math]c(n)[/math] и обоснованностью [math]s(n)[/math], в которой верификатор [math]V[/math] неадаптивный, работает за полиномиальное время и имеет вероятностную и запросовую сложности соответственно [math]r(n)[/math] и [math]q(n)[/math].
Часто [math]\mathrm{PCP}_{1, {}^1/{}_2}[r(n), q(n)][/math] обозначают как [math]\mathrm{PCP}[r(n), q(n)][/math]. |
Свойства
Теорема: |
[math]\mathrm{PCP}[0, 0][/math] = [math]\mathrm{PCP}[O(log(n)), 0][/math] = [math]\mathrm{PCP}[0, O(log(n))][/math] = [math]\mathrm{P}[/math] |
Доказательство: |
[math]\triangleright[/math] |
- [math]\mathrm{PCP}[0, 0][/math] = [math]\mathrm{P}[/math]: вероятностная МТ не использует случайные биты и не обращается к доказательству, то есть является обычной детерминированной МТ, работающей за полиномиальное время.
- [math]\mathrm{PCP}[O(log(n)), 0][/math] = [math]\mathrm{P}[/math]: доступ к [math]O(log(n))[/math] случайных бит не меняет ситуации, так как все возможные строки логарифмической длины детерминированная МТ может сгенерировать и проверить за полиномиальное время.
- [math]\mathrm{PCP}[0, O(log(n))][/math] = [math]\mathrm{P}[/math]: так как доступа к случайным битам нет, доказательство можно рассматривать как строку логарифмической длины. Все возможные такие строки детерминированная МТ может сгенерировать и проверить за полиномиальное время.
|
[math]\triangleleft[/math] |
Теорема: |
[math]\mathrm{PCP}[poly(n), 0][/math] = [math]\mathrm{coRP}[/math] |
Доказательство: |
[math]\triangleright[/math] |
Определение coRP |
[math]\triangleleft[/math] |
Теорема: |
[math]\mathrm{PCP}[0, poly(n)][/math] = [math]\mathrm{NP}[/math] |
Доказательство: |
[math]\triangleright[/math] |
Определение Σ₁ |
[math]\triangleleft[/math] |
Пример