|author=Ладнер
|statement=
<tex>\mathrm{P} \neq \mathrm{NP} \Rightarrow \mathrm{NP} \setminus (\mathrm{P} \cup \mathrm{NPC}) \neq \varnothing</tex>.
|proof=
Предположим, что <tex>\mathrm{P} \neq \mathrm{NP}</tex>. Из этого следует, что никакой <tex>\mathrm{NP}</tex>-полный язык (например, [[Примеры NP-полных_языков. Теорема_Кука#NP-полнота_2|SAT]]) нельзя [[Сведение относительно класса функций. Сведение по Карпу. Трудные и полные задачи|свести по Карпу]] к полиномиальному. Будем искать такой язык <tex>A</tex>, чтобы язык <tex>L = \mathrm{SAT} \cap A</tex> удовлетворял следующим условиям: