PS-полнота языка верных булевых формул с кванторами (TQBF) — различия между версиями
м |
|||
Строка 32: | Строка 32: | ||
<tex>\phi(A, B, t) = \exists R \, \phi(A, R, t-1) \land \phi(R, B, t-1)</tex>. | <tex>\phi(A, B, t) = \exists R \, \phi(A, R, t-1) \land \phi(R, B, t-1)</tex>. | ||
− | Заметим, что данная формула имеет экспоненциальный размер | + | Заметим, что данная формула имеет экспоненциальный размер, поэтому воспользуемся квантором <tex>\forall</tex> и перепишем её следующим образом: |
<tex>\phi(A, B, t) = \exists R \,\forall U \,\forall V \, \{\phi(U, V, t-1) \lor [\neg(U = A \land V = R) \land \neg(U = R \land V = B)]\}</tex>. | <tex>\phi(A, B, t) = \exists R \,\forall U \,\forall V \, \{\phi(U, V, t-1) \lor [\neg(U = A \land V = R) \land \neg(U = R \land V = B)]\}</tex>. |
Версия 16:53, 3 июня 2012
Определение: |
расшифровывается как True Quantified Boolean Formula. Это язык верных булевых формул с кванторами. . |
Чтобы доказать, что , необходимо показать, что и .
Лемма (1): |
. |
Доказательство: |
Чтобы доказать это, просто приведём программу , решающую булеву формулу с кванторами на дополнительной памяти и работающую за конечное время.Эта программа требует if return if return дополнительной памяти для хранения стека рекурсивных вызовов. Максимальная глубина стека — . |
Лемма (2): |
. |
Доказательство: |
Рассмотрим язык . Построим такую функцию , что и .Так как , то существует детерминированная машина Тьюринга , распознающая его с использованием памяти полиномиального размера.Пусть — конфигурация . Размер конфигурации есть , где — длина входа, — некоторый полином. Тогда выражение обозначает , где — все переменные конфигурации . Аналогично выражение обозначает . Всего конфигураций у ДМТ , где — некоторый полином.Рассмотрим функцию , проверяющую следующее условие: конфигурация достижима из конфигурации не более, чем за шагов.. . Заметим, что данная формула имеет экспоненциальный размер, поэтому воспользуемся квантором и перепишем её следующим образом:. Размер полученной функции полиномиален относительно .Теперь мы можем записать функцию , которая будет переводить ДМТ и слово на ленте в формулу из .. Докажем, что сведение верное.Если , то существует путь из стартовой конфигурации в финишную, причём длины не более, чем , а значит формула верна.Если формула Таким образом, оказалась верна, то существует путь из стартовой конфигурации в финишную длины не более, чем . Значит, ДМТ допускает слово . Тогда . . |