Символ Якоби и его свойства — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Новая страница: «{{В разработке}} {{Определение |definition= Пусть <tex>n</tex> {{---}} нечетное, больше единицы и <tex>n=p_1\cdots …»)
(нет различий)

Версия 18:05, 30 июня 2010

Эта статья находится в разработке!


Определение:
Пусть [math]n[/math] — нечетное, больше единицы и [math]n=p_1\cdots p_s[/math], где [math]p_1,\cdots,p_s[/math] — простые числа. Тогда символ Якоби [math]\left(\cfrac{a}{n}\right)[/math] определяется следующим равенством:

[math]\left(\cfrac{a}{n}\right)=\left(\cfrac{a}{p_1}\right)\times\cdots\times\left(\cfrac{a}{p_s}\right)[/math].

Символ Якоби является обобщением символа Лежандра, а символ Лежандра является частным случаем символа Якоби.


Свойства символа Якоби

Свойства символа Якоби прямо вытекают из соответствующих свойств символа Лежандра. Их доказательство оставляется читателю в качестве самостоятельного упражнения.

Утверждение (1):
[math]a_1\equiv a \pmod n\Rightarrow\left(\cfrac{a_1}{n}\right)=\left(\cfrac{a}{n}\right)[/math]
Утверждение (2):
[math]\left(\cfrac{ab}{n}\right)=\left(\cfrac{a}{n}\right)\left(\cfrac{b}{n}\right)[/math]
Утверждение (3):
НОД[math](a,n)=1\Rightarrow\left(\cfrac{a^2 b}{n}\right)=\left(\cfrac{b}{n}\right)[/math]
Утверждение (4):
[math]\left(\cfrac{1}{n}\right)=1[/math]
Утверждение (5):
[math]\left(\cfrac{-1}{n}\right)=(-1)^{\frac{n-1}{2}}[/math]
[math]\triangleright[/math]

Рассмотрим нечетные [math]n[/math] и [math]m[/math]:

[math]0\equiv(n-1)(m-1)\pmod 4\Rightarrow n-1+m-1=nm-1\pmod 4\Rightarrow \cfrac{n-1}{2}+~\cfrac{m-1}{2}\equiv~\cfrac{nm-1}{2}\pmod 4\Rightarrow\cfrac{p_1-1}{2}+\cdots+\cfrac{p_s-1}{2}\equiv\cfrac{p_1p_2\cdots p_s-1}{2}\pmod 2[/math]

Так как [math]\left(\cfrac{1}{n}\right)=\left(\cfrac{1}{p_1}\right)\times\cdots\times\left(\cfrac{1}{p_s}\right)=(-1)^{\frac{p_1-1}{2}+\cdots\frac{p_s-1}{2}}[/math], получаем: [math](-1)^{\frac{p_1-1}{2}+\cdots\frac{p_s-1}{2}}=(-1)^{\frac{p_1p_2\cdots p_s-1}{2}}=(-1)^{\frac{n-1}{2}}[/math]
[math]\triangleleft[/math]
Утверждение (6):
[math]\left(\cfrac{2}{n}\right)=(-1)^{\frac{n^2-1}{8}}[/math]
[math]\triangleright[/math]

Аналогично предыдущему докажем, что

[math]\cfrac{p_1^2-1}{8}+\cdots+\cfrac{p_s^2-1}{8}\equiv\cfrac{(p_1p_2\cdots p_s)^2-1}{8}\pmod 2[/math]

Рассмотрим нечетные [math]n[/math] и [math]m[/math]:

[math]0\equiv(n^2-1)(m^2-1)\pmod 16\Rightarrow n^2-1+m^2-1\equiv n^2m^2-1\pmod 16\Rightarrow \cfrac{n^2-1}{8}+\cfrac{m^2-1}{8}\equiv\cfrac{n^2m^2-1}{8}\pmod 2\Rightarrow\cfrac{p_1^2-1}{8}+\cdots+\cfrac{p_s^2-1}{8}\equiv\cfrac{(p_1p_2\cdots p_s-1)^2}{8}\pmod 2[/math]

Получаем [math](-1)^{\frac{p_1^2-1}{8}+\cdots+\frac{p_s^2-1}{8}}=(-1)^{\frac{(p_1p_2\cdots p_s)^2-1}{8}}=(-1)^{\frac{n^2-1}{8}}[/math]
[math]\triangleleft[/math]