PCP-теорема — различия между версиями
Filchenko (обсуждение | вклад) (Графы условий без доказательсва) |
Filchenko (обсуждение | вклад) (→Графы условий: Доказательство леммы) |
||
| Строка 95: | Строка 95: | ||
{{Лемма | {{Лемма | ||
|statement=Для заданного графа условий <tex>G=\left\langle(V,E,\Sigma,\mathcal{C}\right\rangle</tex>, где <tex>|\Sigma|=3</tex> проверка утверждения <tex>UNSAT(G)=0</tex> — <tex>\mathrm{NP}</tex>-трудная задача. | |statement=Для заданного графа условий <tex>G=\left\langle(V,E,\Sigma,\mathcal{C}\right\rangle</tex>, где <tex>|\Sigma|=3</tex> проверка утверждения <tex>UNSAT(G)=0</tex> — <tex>\mathrm{NP}</tex>-трудная задача. | ||
| − | |proof= | + | |proof= |
| + | Сведем <tex>3Color</tex> к нашей задаче. Дан граф <tex>G</tex>, алфавит <tex>\Sigma=\lbrace 1,2,3 \rbrace</tex> для трех цветов. Оснастим ребра условиями неравенства. Очевидно, что <tex>G \in 3Color</tex> тогда и только тогда, когда <tex>UNSAT(G)=0<tex> (Иногда удобно использовать одно и то же обозначение <tex>G</tex> для графа условий и графа, лежащего в его основе). | ||
}} | }} | ||
| + | |||
==Источники== | ==Источники== | ||
* [http://eccc.hpi-web.de/report/2005/046/|The PCP Theorem by Gap Amplification, Irit Dinur, 2005] | * [http://eccc.hpi-web.de/report/2005/046/|The PCP Theorem by Gap Amplification, Irit Dinur, 2005] | ||
* [http://www.cs.utah.edu/~alfeld/LecturePDFs/pcp.pdf|The PCP Theorem, Notes by Scott Alfeld, 2008] | * [http://www.cs.utah.edu/~alfeld/LecturePDFs/pcp.pdf|The PCP Theorem, Notes by Scott Alfeld, 2008] | ||
Версия 18:15, 3 июня 2012
| Теорема ( теорема): |
Классическое доказательство теоремы громоздкое и довольно сложное для восприятия, рассмотрим вариант докаательства, предложенный Динуром.
Содержание
Лемма об эквивалентности теоремы и -трудности
| Определение: |
Задача :
|
| Лемма: |
теорема эквивалентна вопросу принадлежности
классу -трудных задач для некоторого . |
| Доказательство: |
|
Сначала докажем, что из теоремы следует -трудность . Заметим, что для -полной задачи существует сведение к . Из принадлежности и теоремы следует, что существует доказательство прувера . Обозначим -й бит доказательства (не его значение), будем рассматривать как переменные в формуле. По данному графу , нумерует все возможные случайные строки, которые может выбрать верифаер . Обозначим их . Каждая строка дает нам позиций в доказательстве и предикат . строит формулу для каждого . Поскольку функция от </tex>C</tex> пременных, построенная содержит не более дизъюнктов. Для упрощения будем считать, что формула содержит дизъюнктов. возвращает конъюнкцию всех полученных формул, содержащую дизъюнктов. Можно заметить, что из по теореме следует, что существует , удовлетворяющее всем проверкам . Таким образом все дизъюнктов могут быть удовлетворены и , что и требуется для корректности сведения . Однако, если , хотя бы проверок должны привести к отрицательному результату. Если приводит к отрицательному ответу, формула, построенная по соответствующему предикату должна быть неудовлетворимой, значит не больше дизъюнктов могут быть удовлетворены. Суммарное количество дизъюнктов, которое может быть удовлетворено:
Мы показали, что из теоремы следует -трудность задачи . Теперь покажем, что из -трудности задачи следует теорема. В предположении -трудности задачи любая -полная задача, например может быть сведена к . Таким образом мы можем свести к формуле такой , что:
Имея такое сведение мы построим и доказательство прувера для системы. запускает функцию сведения во время предподсчета, доказателтьство для данной формулы представляет собой значения пременных . случайно выбирает дизъюнкт из и проверяет, что он удовлетворяется . Понятно, что если , то по определению любой дизъюнкт, выбранный будет удовлетворен, поскольку . Если же , мы знаем, что , опять же по определению . Тaким образом вероятность того, что выберет удовлетворенный дизъюнкт меньше . Так как — константа, повторяя процесс мы можем сделать вероятность меньше . Таким образом мы показали эвивалентность теоремы вопросу -трудности задачи . |
Несколько определений
| Определение: |
| назовем множеством условий над множеством переменных . |
| Определение: |
| Число неудовлетворенности — минимальное подмножество неудовлетворенных условий для любых возможных назначений . удовлетворимо тогда и только тогда, когда . Если же неудовлетворимо, тогда . |
Графы условий
Нам понадобятся графы ограничений для двух переменных, которые определяются следующим образом:
| Определение: |
называется графом условий, если:
|
Присваивание это отображение , которое назначает каждой вершине из
значение из . Для любого присвоения определим и .
Назовем числом неудовлетворенности графа . Размером графа будем считать размер его описания
| Лемма: |
Для заданного графа условий , где проверка утверждения — -трудная задача. |
| Доказательство: |
| Сведем к нашей задаче. Дан граф , алфавит для трех цветов. Оснастим ребра условиями неравенства. Очевидно, что тогда и только тогда, когда для графа условий и графа, лежащего в его основе). |