PS-полнота языка верных булевых формул с кванторами (TQBF) — различия между версиями
(Отмена правки 23526 участника Berezhkovskaya (обсуждение)) |
|||
Строка 1: | Строка 1: | ||
{{Определение | {{Определение | ||
− | |definition=<tex>TQBF</tex> расшифровывается как True Quantified Boolean Formula. Это язык верных булевых формул с кванторами. | + | |definition=<tex>TQBF</tex> расшифровывается как True Quantified Boolean Formula. Это '''язык верных булевых формул с кванторами'''. |
<tex>TQBF=\{Q_1 x_1 Q_2 x_2 \cdots Q_n x_n \phi(x_1, x_2, \dots, x_n), Q_i \in \{\forall, \exists\}\}</tex>. | <tex>TQBF=\{Q_1 x_1 Q_2 x_2 \cdots Q_n x_n \phi(x_1, x_2, \dots, x_n), Q_i \in \{\forall, \exists\}\}</tex>. | ||
}} | }} |
Версия 19:13, 3 июня 2012
Определение: |
расшифровывается как True Quantified Boolean Formula. Это язык верных булевых формул с кванторами. . |
Чтобы доказать, что , необходимо показать, что и .
Лемма (1): |
. |
Доказательство: |
Чтобы доказать это, просто приведём программу , решающую булеву формулу с кванторами на дополнительной памяти и работающую за конечное время.Эта программа требует if return if return дополнительной памяти для хранения стека рекурсивных вызовов. Максимальная глубина стека — . |
Лемма (2): |
. |
Доказательство: |
Рассмотрим язык . Построим такую функцию , что и .Так как , то существует детерминированная машина Тьюринга , распознающая его с использованием памяти полиномиального размера.Пусть — конфигурация . Размер конфигурации есть , где — длина входа, — некоторый полином. Тогда выражение обозначает , где — все переменные конфигурации . Аналогично выражение обозначает . Всего конфигураций у ДМТ .Рассмотрим функцию , проверяющую следующее условие: конфигурация достижима из конфигурации не более, чем за шагов.. . Заметим, что данная формула имеет экспоненциальный размер, поэтому воспользуемся квантором и перепишем её следующим образом:. Размер полученной функции полиномиален относительно .Теперь мы можем записать функцию , которая будет переводить ДМТ и слово на ленте в формулу из .. Докажем, что сведение корректно.Если , то существует путь из стартовой конфигурации в финишную, причём длины не более, чем , а значит формула верна.Если формула Таким образом, оказалась верна, то существует путь из стартовой конфигурации в финишную длины не более, чем . Значит, ДМТ допускает слово . Тогда . . |