PS-полнота языка верных булевых формул с кванторами (TQBF) — различия между версиями
| Строка 1: | Строка 1: | ||
{{Определение | {{Определение | ||
| − | |definition=<tex>TQBF</tex> расшифровывается как True Quantified Boolean Formula | + | |definition=<tex>TQBF</tex> расшифровывается как '''True Quantified Boolean Formula'''. Это язык верных булевых формул с кванторами.<br/> |
<tex>TQBF=\{Q_1 x_1 Q_2 x_2 \ldots Q_n x_n \phi(x_1, x_2, \dots, x_n), Q_i \in \{\forall, \exists\}\}</tex>. | <tex>TQBF=\{Q_1 x_1 Q_2 x_2 \ldots Q_n x_n \phi(x_1, x_2, \dots, x_n), Q_i \in \{\forall, \exists\}\}</tex>. | ||
}} | }} | ||
Версия 20:45, 3 июня 2012
| Определение: |
| расшифровывается как True Quantified Boolean Formula. Это язык верных булевых формул с кванторами. . |
Чтобы доказать, что , необходимо показать, что и .
| Лемма (1): |
. |
| Доказательство: |
|
Чтобы доказать это, просто приведём программу , решающую булеву формулу с кванторами на дополнительной памяти и работающую за конечное время. if return if returnЭта программа требует дополнительной памяти для хранения стека рекурсивных вызовов. Максимальная глубина стека — . |
| Лемма (2): |
. |
| Доказательство: |
|
Рассмотрим язык . Построим такую функцию , что и . Так как , то существует детерминированная машина Тьюринга , распознающая его с использованием памяти полиномиального размера. Пусть . Пусть — конфигурация . Размер конфигурации равен , где длина входа. Тогда всего конфигураций . Введём обозначение — в конфигурации на -том месте стоит символ . Тогда выражение обозначает Аналогично выражение обозначает Рассмотрим функцию , проверяющую следующее условие: конфигурация достижима из конфигурации не более, чем за шагов. . . Заметим, что данная формула имеет экспоненциальный размер, поэтому воспользуемся квантором и перепишем её следующим образом: . Размер полученной функции полиномиален относительно . Теперь мы можем записать функцию , которая будет переводить ДМТ и слово на ленте в формулу из . . Выражения и можно записать следующим образом: . .
Если , то существует путь из стартовой конфигурации в финишную, причём длины не более, чем , а значит формула верна. Если формула оказалась верна, то существует путь из стартовой конфигурации в финишную длины не более, чем . Значит, ДМТ допускает слово . Тогда . Таким образом, . |