PCP-система — различия между версиями
| Строка 6: | Строка 6: | ||
|definition = | |definition = | ||
<tex>\mathrm{PCP}</tex>'''-системой''' (системой вероятностно проверяемых доказательств) с полнотой <tex>c(n)</tex> и обоснованностью <tex>s(n)</tex> над алфавитом <tex>\Sigma</tex> для языка <tex>L</tex>, где <tex>0 \le s(n) \le c(n) \le 1</tex>, называется <tex>V</tex> {{---}} [[Вероятностные вычисления. Вероятностная машина Тьюринга#Основные определения|вероятностная машина Тьюринга]], имеющая доступ к цепочке <tex>\pi \in \Sigma^{*} : |\pi| \le 2^{poly(|input|)}</tex> {{---}} доказательству, удовлетворяющая следующим свойствам: | <tex>\mathrm{PCP}</tex>'''-системой''' (системой вероятностно проверяемых доказательств) с полнотой <tex>c(n)</tex> и обоснованностью <tex>s(n)</tex> над алфавитом <tex>\Sigma</tex> для языка <tex>L</tex>, где <tex>0 \le s(n) \le c(n) \le 1</tex>, называется <tex>V</tex> {{---}} [[Вероятностные вычисления. Вероятностная машина Тьюринга#Основные определения|вероятностная машина Тьюринга]], имеющая доступ к цепочке <tex>\pi \in \Sigma^{*} : |\pi| \le 2^{poly(|input|)}</tex> {{---}} доказательству, удовлетворяющая следующим свойствам: | ||
| − | * '''Полнота''': если <tex>x \in L</tex>, то <tex> | + | * '''Полнота''': если <tex>x \in L</tex>, то вероятность того, что <tex>V^{\pi}</tex> допустит <tex>x</tex>, не меньше <tex>c(n)</tex> для некоторой <tex>\pi</tex>. |
| − | * '''Обоснованность''': если <tex>x \notin L</tex>, то <tex> | + | * '''Обоснованность''': если <tex>x \notin L</tex>, то вероятность того, что <tex>V^{\pi}</tex> допустит <tex>x</tex>, не больше <tex>s(n)</tex> для любой <tex>\pi</tex>. |
}} | }} | ||
{{Определение | {{Определение | ||
| Строка 23: | Строка 23: | ||
{{Определение | {{Определение | ||
|definition = | |definition = | ||
| − | Сложностный класс <tex>\mathrm{PCP}_{c(n), s(n)}[r(n), q(n)]</tex> является объединением всех языков <tex>L</tex>, для которых существует <tex>\mathrm{PCP}</tex>-система над бинарным алфавитом с полнотой <tex>c(n)</tex> и обоснованностью <tex>s(n)</tex>, в которой верификатор <tex>V</tex> | + | Сложностный класс <tex>\mathrm{PCP}_{c(n), s(n)}[r(n), q(n)]</tex> является объединением всех языков <tex>L</tex>, для которых существует <tex>\mathrm{PCP}</tex>-система над бинарным алфавитом с полнотой <tex>c(n)</tex> и обоснованностью <tex>s(n)</tex>, в которой неадаптивный верификатор <tex>V</tex> работает за полиномиальное время и имеет вероятностную и запросную сложности соответственно <tex>r(n)</tex> и <tex>q(n)</tex>.<br/> |
Часто <tex>\mathrm{PCP}_{1, {}^1/{}_2}[r(n), q(n)]</tex> обозначают как <tex>\mathrm{PCP}[r(n), q(n)]</tex>. | Часто <tex>\mathrm{PCP}_{1, {}^1/{}_2}[r(n), q(n)]</tex> обозначают как <tex>\mathrm{PCP}[r(n), q(n)]</tex>. | ||
}} | }} | ||
| Строка 31: | Строка 31: | ||
|statement = <tex>\mathrm{PCP}[0, 0]</tex> = <tex>\mathrm{PCP}[O(log(n)), 0]</tex> = <tex>\mathrm{PCP}[0, O(log(n))]</tex> = <tex>\mathrm{P}</tex>. | |statement = <tex>\mathrm{PCP}[0, 0]</tex> = <tex>\mathrm{PCP}[O(log(n)), 0]</tex> = <tex>\mathrm{PCP}[0, O(log(n))]</tex> = <tex>\mathrm{P}</tex>. | ||
|proof = | |proof = | ||
| − | * <tex>\mathrm{PCP}[0, 0]</tex> = <tex>\mathrm{P}</tex>: вероятностная МТ не использует случайные биты и не обращается к доказательству, то есть | + | * <tex>\mathrm{PCP}[0, 0]</tex> = <tex>\mathrm{P}</tex>: вероятностная МТ не использует случайные биты и не обращается к доказательству, то есть работает как обычная детерминированной МТ, работающей за полиномиальное время. |
| − | * <tex>\mathrm{PCP}[O(log(n)), 0]</tex> = <tex>\mathrm{P}</tex>: доступ к <tex>O(log(n))</tex> случайных бит не меняет ситуации, так как все возможные | + | * <tex>\mathrm{PCP}[O(log(n)), 0]</tex> = <tex>\mathrm{P}</tex>: доступ к <tex>O(log(n))</tex> случайных бит не меняет ситуации, так как все возможные битовые цепочки логарифмической длины детерминированная МТ может сгенерировать и проверить за полиномиальное время. |
| − | * <tex>\mathrm{PCP}[0, O(log(n))]</tex> = <tex>\mathrm{P}</tex>: так как доступа к случайным битам нет, | + | * <tex>\mathrm{PCP}[0, O(log(n))]</tex> = <tex>\mathrm{P}</tex>: так как доступа к случайным битам нет, <tex>\pi</tex> можно рассматривать как битовую цепочку логарифмической длины. Все возможные такие цепочки детерминированная МТ может сгенерировать и проверить за полиномиальное время. |
}} | }} | ||
{{Теорема | {{Теорема | ||
Версия 01:24, 4 июня 2012
PCP(probabilistically checkable proof) - вид доказательства, проверяемого рандомизированным алгоритмом, использующим ограниченное число случайных бит и читающим ограниченное число бит доказательства. Такой алгоритм должен с достаточно высокими вероятностями принимать корректные доказательства и отвергать ошибочные.
Определения
| Определение: |
-системой (системой вероятностно проверяемых доказательств) с полнотой и обоснованностью над алфавитом для языка , где , называется — вероятностная машина Тьюринга, имеющая доступ к цепочке — доказательству, удовлетворяющая следующим свойствам:
|
| Определение: |
| Randomness complexity (вероятностной сложностью) верификатора называется число случайных битов, которые он использует за всё время работы со входом длины . |
| Определение: |
| Query complexity (запросной сложностью) верификатора называется число запросов битов из , которые он отсылает за всё время работы со входом длины . |
| Определение: |
| Верификатор называется non-adaptive (неадаптивным), если при отправке запроса не использует ответы на предыдущие. Иными словами, его работа не изменится, если все свои запросы он отправит одновременно. |
| Определение: |
| Сложностный класс является объединением всех языков , для которых существует -система над бинарным алфавитом с полнотой и обоснованностью , в которой неадаптивный верификатор работает за полиномиальное время и имеет вероятностную и запросную сложности соответственно и . Часто обозначают как . |
Свойства
| Теорема: |
= = = . |
| Доказательство: |
|
| Теорема: |
= . |
| Доказательство: |
| Очевидно следует из определения coRP. |
| Теорема: |
= . |
| Доказательство: |
| Очевидно следует из определения Σ₁. |
Пример
| Теорема: |
Graph Nonisomorphism(GNI) . |
| Доказательство: |
|
и — графы на вершинах. Требуется проверить, изоморфны ли они друг другу.
Верификатором будет вероятностная МТ, работающая эквивалентно следующему псевдокоду: p() { i = random{1, 2}; = random permutation{1..n}; = ; if ( == 0) or ( == 3-i) { return 0; } if ( == i) { return 1; } } Проверим полноту и обоснованность:
|