Вероятностные вычисления. Вероятностная машина Тьюринга — различия между версиями
м (→См. также) |
(→Соотношение вероятностных классов: Убрана перемещенная теорема) |
||
Строка 79: | Строка 79: | ||
3. <tex>\mathrm{PP} \subset \mathrm{PS}</tex>. Пусть <tex>p</tex> — программа для языка <tex>L \in \mathrm{PP}</tex>. Она используют не более чем полиномиальное количество вероятностных бит, так как сама работает за полиномиальное время. Тогда программа для <tex>\mathrm{PS}</tex> будет перебирать все участки вероятностных лент нужной полиномиальной длины и запускать на них <tex>p</tex>. Ответом будет <tex>0</tex> или <tex>1</tex> в зависимости от того, каких ответов <tex>p</tex> оказалось больше. | 3. <tex>\mathrm{PP} \subset \mathrm{PS}</tex>. Пусть <tex>p</tex> — программа для языка <tex>L \in \mathrm{PP}</tex>. Она используют не более чем полиномиальное количество вероятностных бит, так как сама работает за полиномиальное время. Тогда программа для <tex>\mathrm{PS}</tex> будет перебирать все участки вероятностных лент нужной полиномиальной длины и запускать на них <tex>p</tex>. Ответом будет <tex>0</tex> или <tex>1</tex> в зависимости от того, каких ответов <tex>p</tex> оказалось больше. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
}} | }} | ||
Версия 23:07, 4 июня 2012
Вероятностные вычисления — один из подходов в теории вычислительной сложности, в котором программы получают доступ, говоря неформально, к генератору случайных чисел. Мы рассмотрим классы сложности, для которых программы могут работать за полиномиальное время и делать односторонние, двусторонние ошибки или работать за полиномиальное время лишь в среднем случае.
Содержание
Основные определения
Определение: |
Вероятностная лента — бесконечная в одну сторону последовательность битов, распределение которых подчиняется некоторому вероятностному закону (обычно считают, что биты в различных позициях независимы и вероятность нахождения | или в каждой позиции равна ).
Определение: |
Вероятностная машина Тьюринга (ВМТ) — детерминированная машина Тьюринга, имеющая вероятностную ленту. Переходы в ВМТ могут осуществляться с учетом информации, считанной с вероятностной ленты. |
Используя тезис Черча-Тьюринга, ВМТ можно сопоставить программы, имеющие доступ к случайным битам. Обращение к очередному биту можно трактовать как вызов специальной функции random(). При этом также будем предполагать, что вероятностная лента является неявным аргументом программы или ВМТ, т.е. , где — вероятностная лента.
Введем вероятностное пространство , где пространство элементарных исходов — множество всех вероятностных лент, — сигма-алгебра подмножеств , — вероятностная мера, заданная на . Будем считать, что порождена событиями, зависящими лишь от конечного числа бит вероятностной ленты (то есть существующими в дискретных вероятностных пространствах). Покажем, что любой предикат от ВМТ является событием.
Теорема: |
Пусть — ВМТ. Тогда для любых и — предиката от выполняется , т.е. измеримо. |
Доказательство: |
, где прочитала ровно первых символов с . Это верно, поскольку мы рассматриваем только завершающиеся ВМТ. Кроме того, из определения следует, что они дизъюнктны. как зависящие от первых битов вероятностной ленты, — префикс . как счетное объединение событий, при этом из их дизъюнктности следует, что . |
Вероятностные классы сложности
Определение: |
— сложностный класс, допускающий ошибки программ на словах из . Заметим, что константа в пункте 2 определения может быть заменена на любую другую из промежутка , поскольку требуемой вероятности можно добиться множественным запуском программы.
можно рассматривать как вероятностный аналог класса , предполагая, что вероятность угадать сертификат в случае его существования не менее .
Определение: |
. |
Класс
допускает ошибки программ на словах, не принадлежащих .
Определение: |
| (от probabilistic polynomial) — множество языков , для которых :
также допускает двусторонние ошибки, но является более широким по сравнению с .
Соотношение вероятностных классов
Теорема: |
. |
Доказательство: |
1. . Если в программе для заменить все вызовы random() на недетерминированный выбор, то получим программу для с ограничениями .2. . Приведем программу с ограничениями класса , которая разрешает . Пусть функция infair_coin() моделирует нечестную монету, а именно возвращает единицу с вероятностью , где мы определим позже, и ноль с вероятностью . Пусть также — верификатор сертификатов для . Тогда будет выглядеть следующим образом:(x) c <- случайный сертификат if (x, c) return 1 return infair_coin() Необходимо удовлетворить условию .Пусть . В этом случае вернет и результат работы программы будет зависеть от нечестной монеты. Она вернет с вероятностью .Пусть по формуле полной вероятности , где — вероятность угадать правильный сертификат. Заметим, что поскольку длина всех сертификатов ограничена некоторым полиномом и существует хотя бы один правильный сертификат, . Найдем из неравенства : . Тогда; ; . Достаточно взять 3. . Из сделанного выше замечания следует, что работу функции infair_coin() можно смоделировать с помощью не более чем вызовов random(). Также учтем, что длина сертификата и время работы полиномиальны относительно . Таким образом, мы построили программу , удовлетворяющую ограничениям класса . . Пусть — программа для языка . Она используют не более чем полиномиальное количество вероятностных бит, так как сама работает за полиномиальное время. Тогда программа для будет перебирать все участки вероятностных лент нужной полиномиальной длины и запускать на них . Ответом будет или в зависимости от того, каких ответов оказалось больше. |