Вероятностные вычисления. Вероятностная машина Тьюринга — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 2: Строка 2:
 
'''Вероятностные вычисления''' — один из подходов в теории вычислительной сложности, в котором программы получают доступ, говоря неформально, к генератору случайных чисел. Мы рассмотрим классы сложности, для которых программы могут работать за полиномиальное время и делать односторонние, двусторонние ошибки или работать за полиномиальное время лишь в среднем случае.
 
'''Вероятностные вычисления''' — один из подходов в теории вычислительной сложности, в котором программы получают доступ, говоря неформально, к генератору случайных чисел. Мы рассмотрим классы сложности, для которых программы могут работать за полиномиальное время и делать односторонние, двусторонние ошибки или работать за полиномиальное время лишь в среднем случае.
  
== Основные определения ==
 
 
{{Определение
 
{{Определение
 
|definition =
 
|definition =

Версия 23:42, 4 июня 2012

Вероятностные вычисления — один из подходов в теории вычислительной сложности, в котором программы получают доступ, говоря неформально, к генератору случайных чисел. Мы рассмотрим классы сложности, для которых программы могут работать за полиномиальное время и делать односторонние, двусторонние ошибки или работать за полиномиальное время лишь в среднем случае.


Определение:
Вероятностная лента — бесконечная в одну сторону последовательность битов, распределение которых подчиняется некоторому вероятностному закону (обычно считают, что биты в различных позициях независимы и вероятность нахождения [math]0[/math] или [math]1[/math] в каждой позиции равна [math]1/2[/math]).


Определение:
Вероятностная машина Тьюринга (ВМТ) — детерминированная машина Тьюринга, имеющая вероятностную ленту. Переходы в ВМТ могут осуществляться с учетом информации, считанной с вероятностной ленты.


Используя тезис Черча-Тьюринга, ВМТ можно сопоставить программы, имеющие доступ к случайным битам. Обращение к очередному биту можно трактовать как вызов специальной функции random(). При этом также будем предполагать, что вероятностная лента является неявным аргументом программы или ВМТ, т.е. [math]p(x) = p(x, r)[/math], где [math]r[/math] — вероятностная лента.

Введем вероятностное пространство [math](\Omega, \Sigma, \operatorname{P})[/math], где пространство элементарных исходов [math]\Omega[/math] — множество всех вероятностных лент, [math]\Sigma[/math] — сигма-алгебра подмножеств [math]\Omega[/math], [math]\operatorname{P}[/math] — вероятностная мера, заданная на [math]\Sigma[/math]. Будем считать, что [math]\Sigma[/math] порождена событиями, зависящими лишь от конечного числа бит вероятностной ленты (то есть существующими в дискретных вероятностных пространствах). Покажем, что любой предикат от ВМТ является событием.

Теорема:
Пусть [math]m[/math] — ВМТ. Тогда для любых [math]x[/math] и [math]A[/math] — предиката от [math]m[/math] выполняется [math]R = \{r \bigm| A(m(x, r))\} \in \Sigma[/math], т.е. [math]R[/math] измеримо.
Доказательство:
[math]\triangleright[/math]

[math]R = \bigcup\limits_{i = 0}^\infty R_i[/math], где [math]R_i = \{r \bigm| A(m(x, r)), m[/math] прочитала ровно [math]i[/math] первых символов с [math]r\}[/math]. Это верно, поскольку мы рассматриваем только завершающиеся ВМТ. Кроме того, из определения [math]R_i[/math] следует, что они дизъюнктны.

[math]R_i \in \Sigma[/math] как зависящие от [math]i[/math] первых битов вероятностной ленты, [math]\operatorname{P}(R_i) = \frac{1}{2^i} \cdot |\{s \bigm| |s| = i, s[/math] — префикс [math]r \in R_i\}|[/math].

[math]R \in \Sigma[/math] как счетное объединение событий, при этом из их дизъюнктности следует, что [math]\operatorname{P}(R) = \sum\limits_{i = 0}^{\infty} \operatorname{P}(R_i)[/math].
[math]\triangleleft[/math]

См. также

Литература