171
правка
Изменения
Нет описания правки
'''Теорема Ладнера''' (Ladner's Theorem) утверждает, что если [[Класс P|P]] не совпадает с [[Класс NP|NP]], то существует язык, принадлежащий <tex>\mathrm{NP}</tex>, но не являющийся ни полиномиальным, ни [[NP-полнота|NP-полным]].
== Иллюстрация ==
Определим язык <tex>A</tex> как множество таких формул <tex>\alpha</tex>,
что <tex>\left\lfloor \frac{1}{2}\log_{10}^*|\alpha|\right\rfloor</tex> чётно.
Иными словами, <tex>A</tex> — это язык формул с длинами, лежащими в промежутках
<tex>\left[1,10^{10}\right),
\left[\underbrace{10^{10^{\cdot^{\cdot^{10}}}}}_4,
\underbrace{10^{10^{\cdot^{\cdot^{10}}}}}_6\right), \ldots</tex>
Далее будем обозначать <tex>\underbrace{a^{a^{\cdot^{\cdot^{a}}}}}_n</tex>
как <tex>^{n}a</tex>.
Рассмотрим язык [[SAT]] всех удовлетворимых формул. Логично предположить, что как в <tex>A</tex>,
так и в <tex>\bar{A}</tex> лежит бесконечное множество элементов из <tex>\mathrm{SAT}</tex>,
не распознаваемых за полиномиальное время, поэтому <tex>\mathrm{SAT} \cap A \not\in \mathrm{P}</tex>.
Из <tex>A \in \mathrm{P}</tex> и <tex>\mathrm{SAT} \in \mathrm{NP}</tex> следует, что <tex>\mathrm{SAT} \cap A \in \mathrm{NP}</tex>.
Осталось показать, что <tex>\mathrm{SAT} \cap A</tex> не является NP-полным. Пусть
это не так. Тогда из NP-полноты следует, что существует полиномиальная функция <math>f</math>,
[[Сведение по Карпу|сводящая по Карпу]] <tex>\mathrm{SAT}</tex> к <tex>\mathrm{SAT} \cap A</tex>.
Возьмём формулу <tex>\varphi</tex> длиной <tex>^{2k+1}10</tex>.
Она не лежит в <tex>A</tex> и, следовательно, в <tex>\mathrm{SAT} \cap A</tex>.
Функция <tex>f</tex> не может перевести <tex>\varphi</tex> в промежуток
<tex>\left[^{2k+2}10, ^{2k+4}10\right)</tex> или дальше, так как размер
выхода полиномиальной функции не может быть экспоненциально больше длины
входа. Значит, <tex>\varphi</tex> отображается в меньший промежуток, но
в этом случае размер выхода экспоненциально меньше длины входа. Добавляя
к этому то, что проверку на принадлежность <tex>f(\varphi)</tex> к
<tex>\mathrm{SAT} \cap A</tex> можно осуществить за <tex>O(2^{poly})</tex>
(это следует из её принадлежности классу <tex>\mathrm{NP}</tex>), получаем программу,
разрешающую <tex>\varphi</tex> за полином. Утверждение о том, что все формулы
<tex>\varphi</tex> длиной <tex>^{2k+1}10</tex> принадлежат классу
<tex>\mathrm{P}</tex>, скорее всего неверно, и, следовательно, язык
<tex>\mathrm{SAT} \cap A</tex> не является NP-полным.
Заметим, что это объяснение не является доказательством!
== Теорема ==
{{Теорема